Papers
Topics
Authors
Recent
2000 character limit reached

HyMNet: a Multimodal Deep Learning System for Hypertension Classification using Fundus Photographs and Cardiometabolic Risk Factors (2310.01099v2)

Published 2 Oct 2023 in eess.IV, cs.CV, and cs.LG

Abstract: In recent years, deep learning has shown promise in predicting hypertension (HTN) from fundus images. However, most prior research has primarily focused on analyzing a single type of data, which may not capture the full complexity of HTN risk. To address this limitation, this study introduces a multimodal deep learning (MMDL) system, dubbed HyMNet, which combines fundus images and cardiometabolic risk factors, specifically age and gender, to improve hypertension detection capabilities. Our MMDL system uses RETFound, a foundation model pre-trained on 1.6 million retinal images, for the fundus path and a fully connected neural network for the age and gender path. The two paths are jointly trained by concatenating the feature vectors from each path that are then fed into a fusion network. The system was trained on 5,016 retinal images from 1,243 individuals collected from the Saudi Ministry of National Guard Health Affairs. The results show that the multimodal model that integrates fundus images along with age and gender outperforms the unimodal system trained solely on fundus photographs, with an F1 score of 0.771 [0.747, 0.796], and 0.745 [0.719, 0.772] for hypertension detection, respectively. Additionally, we studied the effect underlying diabetes mellitus has on the model's predictive ability, concluding that diabetes is used as a confounding variable for distinguishing hypertensive cases. Our code and model weights are publicly available at https://github.com/MohammedSB/HyMNet.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub