Papers
Topics
Authors
Recent
Search
2000 character limit reached

Categorizing Flight Paths using Data Visualization and Clustering Methodologies

Published 1 Oct 2023 in cs.HC and cs.LG | (2310.00773v1)

Abstract: This work leverages the U.S. Federal Aviation Administration's Traffic Flow Management System dataset and DV8, a recently developed tool for highly interactive visualization of air traffic data, to develop clustering algorithms for categorizing air traffic by their varying flight paths. Two clustering methodologies, a spatial-based geographic distance model, and a vector-based cosine similarity model, are demonstrated and compared for their clustering effectiveness. Examples of their applications reveal successful, realistic clustering based on automated clustering result determination and human-in-the-loop processes, with geographic distance algorithms performing better for enroute portions of flight paths and cosine similarity algorithms performing better for near-terminal operations, such as arrival paths. A point extraction technique is applied to improve computation efficiency.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.