Theory of angular momentum transfer from light to molecules (2310.00095v2)
Abstract: We present a theory describing interaction of structured light, such as light carrying orbital angular momentum, with molecules. The light-matter interaction Hamiltonian we derive is expressed through couplings between spherical gradients of the electric field and the (transition) multipole moments of a particle of any non-trivial rotation point group. Our model can therefore accommodate for an arbitrary complexity of the molecular and electric field structure, and can be straightforwardly extended to atoms or nanostructures. Applying this framework to ro-vibrational spectroscopy of molecules, we uncover the general mechanism of angular momentum exchange between the spin and orbital angular momenta of light, molecular rotation and its center-of-mass motion. We show that the non-zero vorticity of Laguerre-Gaussian beams can strongly enhance certain ro-vibrational transitions that are considered forbidden in the case of non-helical light. We discuss the experimental requirements for the observation of these forbidden transitions in state-of-the-art spatially-resolved spectroscopy measurements.
- G. Herzberg, Molecular spectra and molecular structure (D. van Nostrand, 1945).
- A. Corney, Atomic and laser spectroscopy (Clarendon Press Oxford, 1978).
- M. Shapiro and P. Brumer, Quantum control of molecular processes (John Wiley & Sons, 2012).
- C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017).
- C. Monroe, Quantum information processing with atoms and photons, Nature 416, 238 (2002).
- Y. Liu and K.-K. Ni, Bimolecular chemistry in the ultracold regime, Annual Review of Physical Chemistry 73, 73 (2022).
- E. Wigner, Group theory: and its application to the quantum mechanics of atomic spectra, Vol. 5 (Elsevier, 2012).
- T. Bröcker and T. Tom Dieck, Representations of compact Lie groups, Vol. 98 (Springer Science & Business Media, 2013).
- V. Karle, A. Ghazaryan, and M. Lemeshko, Topological charges of periodically kicked molecules, Phys. Rev. Lett. 130, 103202 (2023).
- V. V. Albert, J. P. Covey, and J. Preskill, Robust encoding of a qubit in a molecule, Phys. Rev. X 10, 031050 (2020).
- R. A. Beth, Mechanical detection and measurement of the angular momentum of light, Phys. Rev. 50, 115 (1936).
- K. Y. Bliokh and F. Nori, Transverse and longitudinal angular momenta of light, Physics Reports 592, 1 (2015), transverse and longitudinal angular momenta of light.
- D. L. Andrews and M. Babiker, The angular momentum of light (Cambridge University Press, 2012).
- C. Tamm and C. O. Weiss, Bistability and optical switching of spatial patterns in a laser, J. Opt. Soc. Am. B 7, 1034 (1990).
- V. Bazhenov, M. Soskin, and M. Vasnetsov, Screw dislocations in light wavefronts, Journal of Modern Optics 39, 985 (1992).
- P. Schemmel, G. Pisano, and B. Maffei, Modular spiral phase plate design for orbital angular momentum generation at millimetre wavelengths, Opt. Express 22, 14712 (2014).
- A. Alexandrescu, D. Cojoc, and E. D. Fabrizio, Mechanism of angular momentum exchange between molecules and laguerre-gaussian beams, Phys. Rev. Lett. 96, 243001 (2006).
- P. K. Mondal, B. Deb, and S. Majumder, Angular momentum transfer in interaction of laguerre-gaussian beams with atoms and molecules, Phys. Rev. A 89, 063418 (2014).
- J. D. Jackson, Classical electrodynamics (1999).
- E. A. Power, Introductory Quantum Electrodynamics (Longmans, London, 1964).
- J. Fiutak, The multipole expansion in quantum theory, Canadian Journal of Physics 41, 12 (1963).
- R. D. Johnson III, NIST computational chemistry comparison and benchmark database, NIST standard reference database number 101 (2022).
- R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, An electromagnetic multipole expansion beyond the long-wavelength approximation, Optics Communications 407, 17 (2018).
- D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum theory of angular momentum (World Scientific, 1988).
- A. Gelessus, W. Thiel, and W. Weber, Multipoles and symmetry, Journal of Chemical Education 72, 505 (1995).
- N. G. Green and T. B. Jones, Numerical determination of the effective moments of non-spherical particles, Journal of Physics D: Applied Physics 40, 78 (2006).
- G. Winnewisser and R. L. Cook, The dipole moment of carbon monosulfide, Journal of Molecular Spectroscopy 28, 266 (1968).
- D. Patel, D. Margolese, and T. R. Dykea, Electric dipole moment of so2 in ground and excited vibrational states, The Journal of Chemical Physics 70, 2740 (1979).
- D. G. Truhlar, Vibrational matrix elements of the quadrupole moment functions of h2, n2 and co, International Journal of Quantum Chemistry 6, 975 (1972).
- J. K. Watson, Simplification of the molecular vibration-rotation hamiltonian, Molecular Physics 15, 479 (1968).
- J. K. Watson, Vibration-rotation hamiltonians of linear molecules, Molecular Physics 79, 943 (1993).
- J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45, 13244 (1992).
- W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965).
- E. A. Power and S. Zienau, Coulomb gauge in non-relativistic quantum electro-dynamics and the shape of spectral lines, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 251, 427 (1959).
- P. Atkins and R. Woolley, The interaction of molecular multipoles with the electromagnetic field in the canonical formulation of non-covariant quantum electrodynamics, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 319, 549 (1970).
- R. G. Woolley, Molecular quantum electrodynamics, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 321, 557 (1971).
- E. J. Weniger, Addition theorems as three-dimensional taylor expansions. ii. b functions and other exponentially decaying functions, International Journal of Quantum Chemistry 90, 92 (2002).
- E. J. Weniger, Addition theorems as three-dimensional taylor expansions, International Journal of Quantum Chemistry 76, 280 (2000).
- E. J. Weniger, The spherical tensor gradient operator, Collection of Czechoslovak chemical communications 70, 1225 (2005).
- L. Novotny and B. Hecht, Principles of nano-optics (Cambridge university press, 2012).
- A. Tokmakoff, Time-dependent quantum mechanics and spectroscopy (University of Chicago, Chicago, 2014).
- J. L. Dunham, The energy levels of a rotating vibrator, Phys. Rev. 41, 721 (1932).
- R. Ram, P. Bernath, and S. Davis, Fourier transform infrared emission spectroscopy of cs, Journal of Molecular Spectroscopy 173, 146 (1995).
- A. E. Siegman, How to (maybe) measure laser beam quality, in DPSS (Diode Pumped Solid State) Lasers: Applications and Issues (Optica Publishing Group, 1998) p. MQ1.
- R. Radebaugh, Review of refrigeration methods, in Handbook of Superconductivity (CRC Press, 2022) pp. 501–518.
- C. P. Koch, M. Lemeshko, and D. Sugny, Quantum control of molecular rotation, Rev. Mod. Phys. 91, 035005 (2019).
- D. Andrews, L. Romero, and M. Babiker, On optical vortex interactions with chiral matter, Optics Communications 237, 133 (2004).
- K. A. Forbes and G. A. Jones, Optical vortex dichroism in chiral particles, Phys. Rev. A 103, 053515 (2021).
- J. R. Rouxel and S. Mukamel, Molecular chirality and its monitoring by ultrafast x-ray pulses, Chemical Reviews 122, 16802 (2022).
- K. A. Forbes and D. L. Andrews, Optical orbital angular momentum: twisted light and chirality, Opt. Lett. 43, 435 (2018).
- K. A. Forbes and D. L. Andrews, Enhanced optical activity using the orbital angular momentum of structured light, Phys. Rev. Res. 1, 033080 (2019).
- P. Král, I. Thanopulos, and M. Shapiro, Colloquium: Coherently controlled adiabatic passage, Rev. Mod. Phys. 79, 53 (2007).
- I. Fernandez-Corbaton, S. Nanz, and C. Rockstuhl, On the dynamic toroidal multipoles from localized electric current distributions, Scientific Reports 7, 7527 (2017).
- J.-i. Kishine, H. Kusunose, and H. M. Yamamoto, On the definition of chirality and enantioselective fields, Israel Journal of Chemistry 62, e202200049 (2022).
- B. A. Stickler, K. Hornberger, and M. S. Kim, Quantum rotations of nanoparticles, Nature Reviews Physics 3, 589 (2021).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.