Papers
Topics
Authors
Recent
2000 character limit reached

Entropic uncertainty relations for multiple measurements assigned with biased weights

Published 29 Sep 2023 in quant-ph | (2309.16955v2)

Abstract: The entropic way of formulating Heisenberg's uncertainty principle not only plays a fundamental role in applications of quantum information theory but also is essential for manifesting genuine nonclassical features of quantum systems. In this paper we investigate R\'{e}nyi entropic uncertainty relations (EURs) in the scenario where measurements on individual copies of a quantum system are selected with nonuniform probabilities. In contrast with EURs that characterize an observer's overall lack of information about outcomes with respect to a collection of measurements, we establish state-dependent lower bounds on the weighted sum of entropies over multiple measurements. Conventional EURs thus correspond to the special cases when all weights are equal, and in such cases, we show our results are generally stronger than previous ones. Moreover, taking the entropic steering criterion as an example, we numerically verify that our EURs could be advantageous in practical quantum tasks by optimizing the weights assigned to different measurements. Importantly, this optimization does not require quantum resources and is efficiently computable on classical computers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Zeitschrift für Physik 43, 172 (1927).
  2. D. Deutsch, Uncertainty in quantum measurements, Phys. Rev. Lett. 50, 631 (1983).
  3. H. Maassen and J. B. M. Uffink, Generalized entropic uncertainty relations, Phys. Rev. Lett. 60, 1103 (1988).
  4. S. Wehner and A. Winter, Entropic uncertainty relations—a survey, New J. Phys. 12, 025009 (2010).
  5. I. Bialynicki-Birula and Ł. Rudnicki, Statistical Complexity (Springer, 2011) pp. 1–34.
  6. S. Friedland, V. Gheorghiu, and G. Gour, Universal uncertainty relations, Phys. Rev. Lett. 111, 230401 (2013).
  7. L. Dammeier, R. Schwonnek, and R. F. Werner, Uncertainty relations for angular momentum, New J. Phys. 17, 093046 (2015).
  8. M. Tomamichel and R. Renner, Uncertainty relation for smooth entropies, Phys. Rev. Lett. 106, 110506 (2011).
  9. F. Grosshans and N. J. Cerf, Continuous-variable quantum cryptography is secure against non-Gaussian attacks, Phys. Rev. Lett. 92, 047905 (2004).
  10. D. G. Marangon, G. Vallone, and P. Villoresi, Source-device-independent ultrafast quantum random number generation, Phys. Rev. Lett. 118, 060503 (2017).
  11. B. Yan, Quantum correlations are tightly bound by the exclusivity principle, Phys. Rev. Lett. 110, 260406 (2013).
  12. S. L. Braunstein and C. M. Caves, Information-theoretic Bell inequalities, Phys. Rev. Lett. 61, 662 (1988).
  13. V. Giovannetti, Separability conditions from entropic uncertainty relations, Phys. Rev. A 70, 012102 (2004).
  14. O. Gühne, Characterizing entanglement via uncertainty relations, Phys. Rev. Lett. 92, 117903 (2004).
  15. O. Gühne and M. Lewenstein, Entropic uncertainty relations and entanglement, Phys. Rev. A 70, 022316 (2004).
  16. Y. Huang, Entanglement criteria via concave-function uncertainty relations, Phys. Rev. A 82, 012335 (2010).
  17. R. Horodecki, P. Horodecki, and M. Horodecki, Quantum α𝛼\alphaitalic_α-entropy inequalities: independent condition for local realism?, Phys. Lett. A 210, 377 (1996).
  18. P. Kurzyński, R. Ramanathan, and D. Kaszlikowski, Entropic test of quantum contextuality, Phys. Rev. Lett. 109, 020404 (2012).
  19. K. Kraus, Complementary observables and uncertainty relations, Phys. Rev. D 35, 3070 (1987).
  20. S. Liu, L.-Z. Mu, and H. Fan, Entropic uncertainty relations for multiple measurements, Phys. Rev. A 91, 042133 (2015).
  21. I. Ivonovic, Geometrical description of quantal state determination, J. Phys. A: Math. Gen. 14, 3241 (1981).
  22. W. K. Wootters and B. D. Fields, Optimal state-determination by mutually unbiased measurements, Ann. Physics 191, 363 (1989).
  23. A. Klappenecker and M. Rötteler, in Lect. Notes Comp. Sci., Vol. 2948 (Springer, 2004) pp. 137–144.
  24. A. O. Pittenger and M. H. Rubin, Mutually unbiased bases, generalized spin matrices and separability, Linear Algebr. Appl. 390, 255 (2004).
  25. G. Gour and A. Kalev, Construction of all general symmetric informationally complete measurements, J. Phys. A: Math. Theor. 47, 335302 (2014).
  26. A. Kalev and G. Gour, Mutually unbiased measurements in finite dimensions, New J. Phys. 16, 053038 (2014).
  27. A. Ketterer and O. Gühne, Entropic uncertainty relations from quantum designs, Phys. Rev. Research 2, 023130 (2020).
  28. A. E. Rastegin, Rényi formulation of uncertainty relations for POVMs assigned to a quantum design, J. Phys. A: Math. Theor. 53, 405301 (2020).
  29. M. Yoshida and G. Kimura, Construction of general symmetric-informationally-complete–positive-operator-valued measures by using a complete orthogonal basis, Phys. Rev. A 106, 022408 (2022).
  30. A. E. Rastegin, Entropic uncertainty relations from equiangular tight frames and their applications, Proc. R. Soc. A 479, 20220546 (2023).
  31. U. Larsen, Superspace geometry: the exact uncertainty relationship between complementary aspects, J. Phys. A: Math. Gen. 23, 1041 (1990).
  32. J. Sánchez-Ruiz, Improved bounds in the entropic uncertainty and certainty relations for complementary observables, Phys. Lett. A 201, 125 (1995).
  33. J. Sánches-Ruiz, Optimal entropic uncertainty relation in two-dimensional Hilbert space, Phys. Lett. A 244, 189 (1998).
  34. S. Wu, S. Yu, and K. Mølmer, Entropic uncertainty relation for mutually unbiased bases, Phys. Rev. A 79, 022104 (2009).
  35. A. E. Rastegin, Uncertainty relations for MUBs and SIC-POVMs in terms of generalized entropies, Eur. Phys. J. D 67, 1 (2013).
  36. B. Chen and S.-M. Fei, Uncertainty relations based on mutually unbiased measurements, Quantum Inf. Proc. 14, 2227 (2015).
  37. A. E. Rastegin, On uncertainty relations and entanglement detection with mutually unbiased measurements, Open Syst. Inf. Dyn. 22, 1550005 (2015).
  38. S. Huang, Z.-B. Chen, and S. Wu, Entropic uncertainty relations for general symmetric informationally complete positive operator-valued measures and mutually unbiased measurements, Phys. Rev. A 103, 042205 (2021).
  39. A. F. Rotundo and R. Schwonnek, An entropic uncertainty principle for mixed states, arXiv: 2303.11382  (2023).
  40. Č. Brukner and A. Zeilinger, Operationally invariant information in quantum measurements, Phys. Rev. Lett. 83, 3354 (1999).
  41. P. Harremoës and F. Topsoe, Inequalities between entropy and index of coincidence derived from information diagrams, IEEE Trans. Inf. Theory 47, 2944 (2001).
  42. P. Busch, P. J. Lahti, and P. Mittelstaedt, The quantum theory of measurement, Vol. 2 (Springer Science & Business Media, 1996).
  43. T. Heinosaari, T. Miyadera, and M. Ziman, An invitation to quantum incompatibility, J. Phys. A: Math. Theor. 49, 123001 (2016).
  44. T. Kriváchy, F. Fröwis, and N. Brunner, Tight steering inequalities from generalized entropic uncertainty relations, Phys. Rev. A 98, 062111 (2018).
  45. R. Uola, T. Moroder, and O. Gühne, Joint measurability of generalized measurements implies classicality, Phys. Rev. Lett. 113, 160403 (2014).
  46. J. Sánchez, Entropic uncertainty and certainty relations for complementary observables, Phys. Lett. A 173, 233 (1993).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.