Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Semantic Proximity Alignment: Towards Human Perception-consistent Audio Tagging by Aligning with Label Text Description (2309.16265v2)

Published 28 Sep 2023 in cs.SD and eess.AS

Abstract: Most audio tagging models are trained with one-hot labels as supervised information. However, one-hot labels treat all sound events equally, ignoring the semantic hierarchy and proximity relationships between sound events. In contrast, the event descriptions contains richer information, describing the distance between different sound events with semantic proximity. In this paper, we explore the impact of training audio tagging models with auxiliary text descriptions of sound events. By aligning the audio features with the text features of corresponding labels, we inject the hierarchy and proximity information of sound events into audio encoders, improving the performance while making the prediction more consistent with human perception. We refer to this approach as Semantic Proximity Alignment (SPA). We use Ontology-aware mean Average Precision (OmAP) as the main evaluation metric for the models. OmAP reweights the false positives based on Audioset ontology distance and is more consistent with human perception compared to mAP. Experimental results show that the audio tagging models trained with SPA achieve higher OmAP compared to models trained with one-hot labels solely (+1.8 OmAP). Human evaluations also demonstrate that the predictions of SPA models are more consistent with human perception.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube