Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 133 tok/s
Gemini 3.0 Pro 55 tok/s Pro
Gemini 2.5 Flash 164 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

DynaCon: Dynamic Robot Planner with Contextual Awareness via LLMs (2309.16031v1)

Published 27 Sep 2023 in cs.RO

Abstract: Mobile robots often rely on pre-existing maps for effective path planning and navigation. However, when these maps are unavailable, particularly in unfamiliar environments, a different approach become essential. This paper introduces DynaCon, a novel system designed to provide mobile robots with contextual awareness and dynamic adaptability during navigation, eliminating the reliance of traditional maps. DynaCon integrates real-time feedback with an object server, prompt engineering, and navigation modules. By harnessing the capabilities of LLMs, DynaCon not only understands patterns within given numeric series but also excels at categorizing objects into matched spaces. This facilitates dynamic path planner imbued with contextual awareness. We validated the effectiveness of DynaCon through an experiment where a robot successfully navigated to its goal using reasoning. Source code and experiment videos for this work can be found at: https://sites.google.com/view/dynacon.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. H. Qin, S. Shao, T. Wang, X. Yu, Y. Jiang, and Z. Cao, “Review of autonomous path planning algorithms for mobile robots,” Drones, vol. 7, no. 3, p. 211, 2023.
  2. H. Jiang, H. Wang, W.-Y. Yau, and K.-W. Wan, “A brief survey: Deep reinforcement learning in mobile robot navigation,” in 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA).   IEEE, 2020, pp. 592–597.
  3. A. R. Willms and S. X. Yang, “An efficient dynamic system for real-time robot-path planning,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 36, no. 4, pp. 755–766, 2006.
  4. B. Patle, A. Pandey, D. Parhi, A. Jagadeesh, et al., “A review: On path planning strategies for navigation of mobile robot,” Defence Technology, vol. 15, no. 4, pp. 582–606, 2019.
  5. A. Bonarini, “Communication in human-robot interaction,” Current Robotics Reports, vol. 1, pp. 279–285, 2020.
  6. M. Kritsotakis, M. Michou, E. Nikoloudakis, A. Bikakis, T. Patkos, G. Antoniou, and D. Plexousakis, “C-ngine: A contextual navigation guide for indoor environments,” in Ambient Intelligence: European Conference, AmI 2008, Nuremberg, Germany, November 19-22, 2008. Proceedings.   Springer, 2008, pp. 258–275.
  7. D. Carton, W. Olszowy, D. Wollherr, and M. Buss, “Socio-contextual constraints for human approach with a mobile robot,” International Journal of Social Robotics, vol. 9, pp. 309–327, 2017.
  8. M. Gao, J. Oberländer, T. Schamm, and J. M. Zöllner, “Contextual task-aware shared autonomy for assistive mobile robot teleoperation,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2014, pp. 3311–3318.
  9. T. Carlson and Y. Demiris, “Human-wheelchair collaboration through prediction of intention and adaptive assistance,” in 2008 IEEE International Conference on Robotics and Automation.   IEEE, 2008, pp. 3926–3931.
  10. D. Calisi, A. Farinelli, G. Grisetti, L. Iocchi, D. Nardi, S. Pellegrini, D. Tipaldi, and V. A. Ziparo, “Uses of contextual knowledge in mobile robots,” in Congress of the Italian Association for Artificial Intelligence.   Springer, 2007, pp. 543–554.
  11. Z. Mathews, M. Lechón, J. B. Calvo, A. Dhir, A. Duff, S. B. i Badia, and P. F. Verschure, “Insect-like mapless navigation based on head direction cells and contextual learning using chemo-visual sensors,” in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2009, pp. 2243–2250.
  12. M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman, et al., “Do as i can, not as i say: Grounding language in robotic affordances,” arXiv preprint arXiv:2204.01691, 2022.
  13. S. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor, “Chatgpt for robotics: Design principles and model abilities,” Microsoft Auton. Syst. Robot. Res, vol. 2, p. 20, 2023.
  14. H. Biggie, A. N. Mopidevi, D. Woods, and C. Heckman, “Tell me where to go: A composable framework for context-aware embodied robot navigation,” arXiv preprint arXiv:2306.09523, 2023.
  15. C. Huang, O. Mees, A. Zeng, and W. Burgard, “Visual language maps for robot navigation,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 10 608–10 615.
  16. I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and A. Garg, “Progprompt: Generating situated robot task plans using large language models,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 11 523–11 530.
  17. G. Dagan, F. Keller, and A. Lascarides, “Dynamic planning with a llm,” arXiv preprint arXiv:2308.06391, 2023.
  18. B. Kim, J. Kim, Y. Kim, C. Min, and J. Choi, “Context-aware planning and environment-aware memory for instruction following embodied agents,” arXiv preprint arXiv:2308.07241, 2023.
  19. K. Vamsi, P. Alle, T. Brichpuria, and P. Malarvizhi, “Ros based autonomous disinfectant mobile robot for hospitals,” in 2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA).   IEEE, 2021, pp. 94–100.
  20. D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23–33, 1997.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com