Papers
Topics
Authors
Recent
2000 character limit reached

Temporal graph models fail to capture global temporal dynamics (2309.15730v3)

Published 27 Sep 2023 in cs.IR and cs.LG

Abstract: A recently released Temporal Graph Benchmark is analyzed in the context of Dynamic Link Property Prediction. We outline our observations and propose a trivial optimization-free baseline of "recently popular nodes" outperforming other methods on medium and large-size datasets in the Temporal Graph Benchmark. We propose two measures based on Wasserstein distance which can quantify the strength of short-term and long-term global dynamics of datasets. By analyzing our unexpectedly strong baseline, we show how standard negative sampling evaluation can be unsuitable for datasets with strong temporal dynamics. We also show how simple negative-sampling can lead to model degeneration during training, resulting in impossible to rank, fully saturated predictions of temporal graph networks. We propose improved negative sampling schemes for both training and evaluation and prove their usefulness. We conduct a comparison with a model trained non-contrastively without negative sampling. Our results provide a challenging baseline and indicate that temporal graph network architectures need deep rethinking for usage in problems with significant global dynamics, such as social media, cryptocurrency markets or e-commerce. We open-source the code for baselines, measures and proposed negative sampling schemes.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.