The toric locus of a reaction network is a smooth manifold (2309.15241v1)
Abstract: We show that the toric locus of a reaction network is a smoothly embedded submanifold of the Euclidean space. More precisely, we prove that the toric locus of a reaction network is the image of an embedding and it is diffeomorphic to the product space between the affine invariant polyhedron of the network and its set of complex-balanced flux vectors. Moreover, we prove that within each affine invariant polyhedron, the complex-balanced equilibrium depends smoothly on the parameters (i.e., reaction rate constants). We also show that the complex-balanced equilibrium depends smoothly on the initial conditions.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.