Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

AsQM: Audio streaming Quality Metric based on Network Impairments and User Preferences (2309.15186v1)

Published 26 Sep 2023 in eess.SP and cs.NI

Abstract: There are many users of audio streaming services because of the proliferation of cloud-based audio streaming services for different content. The complex networks that support these services do not always guarantee an acceptable quality on the end-user side. In this paper, the impact of temporal interruptions on the reproduction of audio streaming and the users preference in relation to audio contents are studied. In order to determine the key parameters in the audio streaming service, subjective tests were conducted, and their results show that users Quality-of-Experience (QoE) is highly correlated with the following application parameters, the number of temporal interruptions or stalls, its frequency and length, and the temporal location in which they occur. However, most important, experimental results demonstrated that users preference for audio content plays an important role in users QoE. Thus, a Preference Factor (PF) function is defined and considered in the formulation of the proposed metric named Audio streaming Quality Metric (AsQM). Considering that multimedia service providers are based on web servers, a framework to obtain user information is proposed. Furthermore, results show that the AsQM implemented in the audio player of an end users device presents a low impact on energy, processing and memory consumption.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. K. Jaalama, N. Fagerholm, A. Julin, J.-P. Virtanen, M. Maksimainen, and H. Hyyppä, “Sense of presence and sense of place in perceiving a 3d geovisualization for communication in urban planning – differences introduced by prior familiarity with the place,” Landscape and Urban Planning, vol. 207, p. 103996, 2021.
  2. G. Li and R. Liu, “Original music album diffusion sustainability in social network-based communities: A network embedded perspective,” IEEE Access, vol. 8, pp. 53107–53115, 2020.
  3. J. Skowronek, A. Raake, G. H. Berndtsson, O. S. Rummukainen, P. Usai, S. N. B. Gunkel, M. Johanson, E. A. P. Habets, L. Malfait, D. Lindero, and A. Toet, “Quality of experience in telemeetings and videoconferencing: A comprehensive survey,” IEEE Access, vol. 10, pp. 63885–63931, 2022.
  4. A. Trattnig, C. Timmerer, and C. Mueller, “Investigation of youtube regarding content provisioning for http adaptive streaming,” in Proceedings of the 23rd Packet Video Workshop, PV ’18, (New York, NY, USA), p. 60–65, Association for Computing Machinery, 2018.
  5. H. Ishizaki, S. C. Herring, G. Hattori, and Y. Takishima, “Understanding user behavior on online music distribution sites: A discourse approach,” iConference 2015 Proceedings, 2015.
  6. R. A. Rahimi and K.-H. Park, “A comparative study of internet architecture and applications of online music streaming services: The impact on the global music industry growth,” in 2020 8th International Conference on Information and Communication Technology (ICoICT), pp. 1–6, 2020.
  7. A. Seyfollahi and A. Ghaffari, “A lightweight load balancing and route minimizing solution for routing protocol for low-power and lossy networks,” Computer Networks, vol. 179, p. 107368, 2020.
  8. U. D. Protocol, “Rfc 768 j. postel isi 28 august 1980,” Isi, 1980.
  9. A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Perceptual evaluation of speech quality (pesq)-a new method for speech quality assessment of telephone networks and codecs,” in 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221), vol. 2, pp. 749–752, IEEE, 2001.
  10. T. J. Chaudhery, “Performance evaluation of codel queue mechanism and tfrc transport protocol when using voip flows,” in 2017 International Conference on Frontiers of Information Technology (FIT), pp. 1–6, IEEE, 2017.
  11. Z. Duanmu, A. Rehman, and Z. Wang, “A quality-of-experience database for adaptive video streaming,” IEEE Transactions on Broadcasting, vol. 64, no. 2, pp. 474–487, 2018.
  12. A. Ragano, E. Benetos, and A. Hines, “Adapting the quality of experience framework for audio archive evaluation,” in 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–3, 2019.
  13. D. Z. Rodríguez, R. L. Rosa, F. L. Almeida, G. Mittag, and S. Möller, “Speech quality assessment in wireless communications with mimo systems using a parametric model,” IEEE Access, vol. 7, pp. 35719–35730, 2019.
  14. J. G. Beerends, N. M. P. Neumann, E. L. van den Broek, A. Llagostera Casanovas, J. T. Menendez, C. Schmidmer, and J. Berger, “Subjective and objective assessment of full bandwidth speech quality,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 440–449, 2020.
  15. R. Hassen, B. Gülecyüz, and E. Steinbach, “Pvc-slp: Perceptual vibrotactile-signal compression based-on sparse linear prediction,” IEEE Transactions on Multimedia, vol. 23, pp. 4455–4468, 2021.
  16. E. T. Affonso, D. Z. Rodríguez, R. L. Rosa, T. Andrade, and G. Bressan, “Voice quality assessment in mobile devices considering different fading models,” in 2016 IEEE International Symposium on Consumer Electronics (ISCE), pp. 21–22, 2016.
  17. D. Z. Rodríguez, D. Carrillo, M. A. Ramírez, P. H. J. Nardelli, and S. Möller, “Incorporating wireless communication parameters into the e-model algorithm,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 29, pp. 956–968, 2021.
  18. Cham: Springer International Publishing, 2019.
  19. H. Gamper, C. K. A. Reddy, R. Cutler, I. J. Tashev, and J. Gehrke, “Intrusive and non-intrusive perceptual speech quality assessment using a convolutional neural network,” in 2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp. 85–89, 2019.
  20. T. Goossens, C. Vercammen, J. Wouters, and A. van Wieringen, “Masked speech perception across the adult lifespan: Impact of age and hearing impairment,” Hearing Research, vol. 344, pp. 109–124, 2017.
  21. M. H. Soni and H. A. Patil, “Non-intrusive quality assessment of noise-suppressed speech using unsupervised deep features,” Speech Communication, vol. 130, pp. 27–44, 2021.
  22. L. Du, L. Zhuo, J. Li, J. Zhang, X. Li, and H. Zhang, “Video quality of experience metric for dynamic adaptive streaming services using dash standard and deep spatial-temporal representation of video,” Applied Sciences, vol. 10, no. 5, 2020.
  23. D. Z. Rodríguez, Z. Wang, R. L. Rosa, and G. Bressan, “The impact of video-quality-level switching on user quality of experience in dynamic adaptive streaming over http,” EURASIP Journal on Wireless Communications and Networking, vol. 2014, no. 1, pp. 1–15, 2014.
  24. M. Torcoli, T. Kastner, and J. Herre, “Objective measures of perceptual audio quality reviewed: An evaluation of their application domain dependence,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 29, pp. 1530–1541, 2021.
  25. X. Min, G. Zhai, J. Zhou, M. C. Q. Farias, and A. C. Bovik, “Study of subjective and objective quality assessment of audio-visual signals,” IEEE Transactions on Image Processing, vol. 29, pp. 6054–6068, 2020.
  26. D. Z. Rodríguez, R. L. Rosa, E. C. Alfaia, J. I. Abrahão, and G. Bressan, “Video quality metric for streaming service using dash standard,” IEEE Transactions on broadcasting, vol. 62, no. 3, pp. 628–639, 2016.
  27. E. T. Affonso, R. D. Nunes, R. L. Rosa, G. F. Pivaro, and D. Z. Rodriguez, “Speech quality assessment in wireless voip communication using deep belief network,” IEEE Access, vol. 6, pp. 77022–77032, 2018.
  28. D. Z. Rodriguez, J. Abrahao, D. C. Begazo, R. L. Rosa, and G. Bressan, “Quality metric to assess video streaming service over tcp considering temporal location of pauses,” IEEE Transactions on Consumer Electronics, vol. 58, no. 3, pp. 985–992, 2012.
  29. Z. Duanmu, K. Zeng, K. Ma, A. Rehman, and Z. Wang, “A quality-of-experience index for streaming video,” IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 1, pp. 154–166, 2016.
  30. C. G. Bampis, Z. Li, A. K. Moorthy, I. Katsavounidis, A. Aaron, and A. C. Bovik, “Study of temporal effects on subjective video quality of experience,” IEEE Transactions on Image Processing, vol. 26, no. 11, pp. 5217–5231, 2017.
  31. W. Robitza, S. Göring, A. Raake, D. Lindegren, G. Heikkilä, J. Gustafsson, P. List, B. Feiten, U. Wüstenhagen, M.-N. Garcia, et al., “Http adaptive streaming qoe estimation with itu-t rec. p. 1203: open databases and software,” in Proceedings of the 9th ACM Multimedia Systems Conference, pp. 466–471, 2018.
  32. T. He, R. Xie, J. Su, X. Tang, and L. Song, “A no reference bitstream-based video quality assessment model for h.265/hevc and h.264/avc,” in 2018 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), pp. 1–5, 2018.
  33. A. Raake, S. Borer, S. M. Satti, J. Gustafsson, R. R. R. Rao, S. Medagli, P. List, S. Göring, D. Lindero, W. Robitza, G. Heikkilä, S. Broom, C. Schmidmer, B. Feiten, U. Wüstenhagen, T. Wittmann, M. Obermann, and R. Bitto, “Multi-model standard for bitstream-, pixel-based and hybrid video quality assessment of uhd/4k: Itu-t p.1204,” IEEE Access, vol. 8, pp. 193020–193049, 2020.
  34. A. Raake, M.-N. Garcia, W. Robitza, P. List, S. Göring, and B. Feiten, “A bitstream-based, scalable video-quality model for http adaptive streaming: Itu-t p.1203.1,” in 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–6, 2017.
  35. P. Guzmán Castillo, P. Arce Vila, and J. C. Guerri Cebollada, “Automatic qoe evaluation of dash streaming using itu-t standard p. 1203 and google puppeteer,” in Proceedings of the 16th ACM International Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks, pp. 79–86, 2019.
  36. E. Liri, P. K. Singh, A. B. Rabiah, K. Kar, K. Makhijani, and K. Ramakrishnan, “Robustness of iot application protocols to network impairments,” in 2018 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN), pp. 97–103, 2018.
  37. P. ITU-T RECOMMENDATION, “Subjective video quality assessment methods for multimedia applications,” International telecommunication union, 1999.
  38. B. O. Jaramillo Sr, J. O. Niño-Castañeda, L. Platiša, and W. Philips, “Content-aware objective video quality assessment,” Journal of Electronic Imaging, vol. 25, no. 1, p. 013011, 2016.
  39. K. Vandenbroucke, E. P. N. Castellar, and L. De Marez, “Subjective insights from time and place shifters in assessing temporal quality of experience,” in 2015 Seventh International Workshop on Quality of Multimedia Experience (QoMEX), pp. 1–2, IEEE, 2015.
  40. F. Laiche, A. B. Letaifa, I. Elloumi, and T. Aguili, “When machine learning algorithms meet user engagement parameters to predict video qoe,” Wireless Personal Communications, vol. 116, no. 3, pp. 2723–2741, 2021.
  41. R. L. Rosa, D. Z. Rodriguez, and G. Bressan, “Sentimeter-br: A social web analysis tool to discover consumers’ sentiment,” in 2013 IEEE 14th International Conference on Mobile Data Management, vol. 2, pp. 122–124, IEEE, 2013.
  42. R. L. Rosa, D. Z. Rodriguez, and G. Bressan, “Sentimeter-br: A new social web analysis metric to discover consumers’ sentiment,” in 2013 IEEE International Symposium on Consumer Electronics (ISCE), pp. 153–154, IEEE, 2013.
  43. D. Z. Rodríguez, R. L. Rosa, E. A. Costa, J. Abrahão, and G. Bressan, “Video quality assessment in video streaming services considering user preference for video content,” IEEE Transactions on Consumer Electronics, vol. 60, no. 3, pp. 436–444, 2014.
  44. M.-N. Garcia, P. List, S. Argyropoulos, D. Lindegren, M. Pettersson, B. Feiten, J. Gustafsson, and A. Raake, “Parametric model for audiovisual quality assessment in iptv: Itu-t rec. p. 1201.2,” in 2013 IEEE 15th International Workshop on Multimedia Signal Processing (MMSP), pp. 482–487, IEEE, 2013.
  45. A. Schwind, C. Moldovan, T. Janiak, N. D. Dworschak, and T. Hoßfeld, “Don’t stop the music: Crowdsourced qoe assessment of music streaming with stalling,” in 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–6, 2020.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.