Rank Estimation for Third-Order Tensor Completion in the Tensor-Train Format (2309.15170v1)
Abstract: We propose a numerical method to obtain an adequate value for the upper bound on the rank for the tensor completion problem on the variety of third-order tensors of bounded tensor-train rank. The method is inspired by the parametrization of the tangent cone derived by Kutschan (2018). A proof of the adequacy of the upper bound for a related low-rank tensor approximation problem is given and an estimated rank is defined to extend the result to the low-rank tensor completion problem. Some experiments on synthetic data illustrate the approach and show that the method is very robust, e.g., to noise on the data.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.