Linking Network and Neuron-level Correlations by Renormalized Field Theory (2309.14973v2)
Abstract: It is frequently hypothesized that cortical networks operate close to a critical point. Advantages of criticality include rich dynamics well-suited for computation and critical slowing down, which may offer a mechanism for dynamic memory. However, mean-field approximations, while versatile and popular, inherently neglect the fluctuations responsible for such critical dynamics. Thus, a renormalized theory is necessary. We consider the Sompolinsky-Crisanti-Sommers model which displays a well studied chaotic as well as a magnetic transition. Based on the analogue of a quantum effective action, we derive self-consistency equations for the first two renormalized Greens functions. Their self-consistent solution reveals a coupling between the population level activity and single neuron heterogeneity. The quantitative theory explains the population autocorrelation function, the single-unit autocorrelation function with its multiple temporal scales, and cross correlations.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.