Papers
Topics
Authors
Recent
2000 character limit reached

Averaged Null Energy and the Renormalization Group (2309.14409v1)

Published 25 Sep 2023 in hep-th and hep-ph

Abstract: We establish a connection between the averaged null energy condition (ANEC) and the monotonicity of the renormalization group, by studying the light-ray operator $\int du T_{uu}$ in quantum field theories that flow between two conformal fixed points. In four dimensions, we derive an exact sum rule relating this operator to the Euler coefficient in the trace anomaly, and show that the ANEC implies the a-theorem. The argument is based on matching anomalies in the stress tensor 3-point function, and relies on special properties of contact terms involving light-ray operators. We also illustrate the sum rule for the example of a free massive scalar field. Averaged null energy appears in a variety of other applications to quantum field theory, including causality constraints, Lorentzian inversion, and quantum information. The quantum information perspective provides a new derivation of the $a$-theorem from the monotonicity of relative entropy. The equation relating our sum rule to the dilaton scattering amplitude in the forward limit suggests an inversion formula for non-conformal theories.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (110)
  1. D. M. Hofman and J. Maldacena, “Conformal collider physics: Energy and charge correlations,” JHEP 0805 (2008) 012, arXiv:0803.1467 [hep-th].
  2. L. J. Dixon, I. Moult, and H. X. Zhu, “Collinear limit of the energy-energy correlator,” Phys. Rev. D 100 no. 1, (2019) 014009, arXiv:1905.01310 [hep-ph].
  3. M. Kologlu, P. Kravchuk, D. Simmons-Duffin, and A. Zhiboedov, “The light-ray OPE and conformal colliders,” JHEP 01 (2021) 128, arXiv:1905.01311 [hep-th].
  4. K. Lee, B. Meçaj, and I. Moult, “Conformal Colliders Meet the LHC,” arXiv:2205.03414 [hep-ph].
  5. T. Hartman, S. Kundu, and A. Tajdini, “Averaged Null Energy Condition from Causality,” JHEP 07 (2017) 066, arXiv:1610.05308 [hep-th].
  6. S. Caron-Huot, “Analyticity in Spin in Conformal Theories,” JHEP 09 (2017) 078, arXiv:1703.00278 [hep-th].
  7. D. Simmons-Duffin, D. Stanford, and E. Witten, “A spacetime derivation of the Lorentzian OPE inversion formula,” JHEP 07 (2018) 085, arXiv:1711.03816 [hep-th].
  8. T. Faulkner, R. G. Leigh, O. Parrikar, and H. Wang, “Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition,” JHEP 09 (2016) 038, arXiv:1605.08072 [hep-th].
  9. T. Hartman, S. Jain, and S. Kundu, “Causality Constraints in Conformal Field Theory,” JHEP 05 (2016) 099, arXiv:1509.00014 [hep-th].
  10. S. Kundu, “Subleading bounds on chaos,” JHEP 04 (2022) 010, arXiv:2109.03826 [hep-th].
  11. H. Casini, E. Teste, and G. Torroba, “Modular Hamiltonians on the null plane and the Markov property of the vacuum state,” J. Phys. A 50 no. 36, (2017) 364001, arXiv:1703.10656 [hep-th].
  12. C. Córdova and S.-H. Shao, “Light-ray Operators and the BMS Algebra,” Phys. Rev. D 98 no. 12, (2018) 125015, arXiv:1810.05706 [hep-th].
  13. Y. Hu and S. Pasterski, “Celestial conformal colliders,” JHEP 02 (2023) 243, arXiv:2211.14287 [hep-th].
  14. D. M. Hofman, “Higher Derivative Gravity, Causality and Positivity of Energy in a UV complete QFT,” Nucl. Phys. B823 (2009) 174–194, arXiv:0907.1625 [hep-th].
  15. W. R. Kelly and A. C. Wall, “Holographic proof of the averaged null energy condition,” Phys. Rev. D90 no. 10, (2014) 106003, arXiv:1408.3566 [gr-qc]. [Erratum: Phys. Rev.D91,no.6,069902(2015)].
  16. G. Klinkhammer, “Averaged energy conditions for free scalar fields in flat space-times,” Phys. Rev. D43 (1991) 2542–2548.
  17. R. M. Wald and U. Yurtsever, “General proof of the averaged null energy condition for a massless scalar field in two-dimensional curved space-time,” Phys. Rev. D44 (1991) 403–416.
  18. A. Folacci, “Averaged null energy condition for electromagnetism in Minkowski space-time,” Phys. Rev. D46 (1992) 2726–2729.
  19. L. H. Ford and T. A. Roman, “Averaged energy conditions and evaporating black holes,” Phys. Rev. D53 (1996) 1988–2000, arXiv:gr-qc/9506052 [gr-qc].
  20. A. Borde, “Geodesic focusing, energy conditions and singularities,” Classical and Quantum Gravity 4 no. 2, (Mar, 1987) 343–356. https://doi.org/10.1088%2F0264-9381%2F4%2F2%2F015.
  21. S. Gao and R. M. Wald, “Theorems on gravitational time delay and related issues,” Class. Quant. Grav. 17 (2000) 4999–5008, arXiv:gr-qc/0007021 [gr-qc].
  22. N. Graham and K. D. Olum, “Achronal averaged null energy condition,” Physical Review D 76 no. 6, (Sep, 2007) . https://doi.org/10.1103%2Fphysrevd.76.064001.
  23. T. Hartman, S. Jain, and S. Kundu, “A New Spin on Causality Constraints,” JHEP 10 (2016) 141, arXiv:1601.07904 [hep-th].
  24. D. M. Hofman, D. Li, D. Meltzer, D. Poland, and F. Rejon-Barrera, “A Proof of the Conformal Collider Bounds,” JHEP 06 (2016) 111, arXiv:1603.03771 [hep-th].
  25. C. Cordova, J. Maldacena, and G. J. Turiaci, “Bounds on OPE Coefficients from Interference Effects in the Conformal Collider,” JHEP 11 (2017) 032, arXiv:1710.03199 [hep-th].
  26. T. Bautista and H. Godazgar, “Lorentzian CFT 3-point functions in momentum space,” JHEP 01 (2020) 142, arXiv:1908.04733 [hep-th].
  27. D. Simmons-Duffin, “The Lightcone Bootstrap and the Spectrum of the 3d Ising CFT,” JHEP 03 (2017) 086, arXiv:1612.08471 [hep-th].
  28. N. Afkhami-Jeddi, T. Hartman, S. Kundu, and A. Tajdini, “Einstein gravity 3-point functions from conformal field theory,” JHEP 12 (2017) 049, arXiv:1610.09378 [hep-th].
  29. D. Meltzer and E. Perlmutter, “Beyond a=c𝑎𝑐a=citalic_a = italic_c: gravitational couplings to matter and the stress tensor OPE,” JHEP 07 (2018) 157, arXiv:1712.04861 [hep-th].
  30. A. Belin, D. M. Hofman, and G. Mathys, “Einstein gravity from ANEC correlators,” JHEP 08 (2019) 032, arXiv:1904.05892 [hep-th].
  31. M. Kologlu, P. Kravchuk, D. Simmons-Duffin, and A. Zhiboedov, “Shocks, Superconvergence, and a Stringy Equivalence Principle,” JHEP 11 (2019) 096, arXiv:1904.05905 [hep-th].
  32. A. Belin, D. M. Hofman, G. Mathys, and M. T. Walters, “On the stress tensor light-ray operator algebra,” JHEP 05 (2021) 033, arXiv:2011.13862 [hep-th].
  33. S. Caron-Huot, D. Mazac, L. Rastelli, and D. Simmons-Duffin, “Dispersive CFT Sum Rules,” JHEP 05 (2021) 243, arXiv:2008.04931 [hep-th].
  34. S. Caron-Huot, D. Mazac, L. Rastelli, and D. Simmons-Duffin, “AdS bulk locality from sharp CFT bounds,” JHEP 11 (2021) 164, arXiv:2106.10274 [hep-th].
  35. S. Caron-Huot, D. Mazac, L. Rastelli, and D. Simmons-Duffin, “Sharp boundaries for the swampland,” JHEP 07 (2021) 110, arXiv:2102.08951 [hep-th].
  36. S. Caron-Huot, Y.-Z. Li, J. Parra-Martinez, and D. Simmons-Duffin, “Causality constraints on corrections to Einstein gravity,” JHEP 05 (2023) 122, arXiv:2201.06602 [hep-th].
  37. A. B. Zamolodchikov, “Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory,” JETP Lett. 43 (1986) 730–732.
  38. J. L. Cardy, “Is There a c Theorem in Four-Dimensions?,” Phys. Lett. B 215 (1988) 749–752.
  39. Z. Komargodski and A. Schwimmer, “On Renormalization Group Flows in Four Dimensions,” JHEP 12 (2011) 099, arXiv:1107.3987 [hep-th].
  40. H. Casini and M. Huerta, “A Finite entanglement entropy and the c-theorem,” Phys. Lett. B 600 (2004) 142–150, arXiv:hep-th/0405111.
  41. H. Casini and M. Huerta, “A c-theorem for the entanglement entropy,” J. Phys. A 40 (2007) 7031–7036, arXiv:cond-mat/0610375.
  42. H. Casini and M. Huerta, “On the RG running of the entanglement entropy of a circle,” Phys. Rev. D 85 (2012) 125016, arXiv:1202.5650 [hep-th].
  43. H. Casini, E. Testé, and G. Torroba, “Markov Property of the Conformal Field Theory Vacuum and the a Theorem,” Phys. Rev. Lett. 118 no. 26, (2017) 261602, arXiv:1704.01870 [hep-th].
  44. H. Casini, I. Salazar Landea, and G. Torroba, “Irreversibility, QNEC, and defects,” arXiv:2303.16935 [hep-th].
  45. R. C. Myers and A. Sinha, “Seeing a c-theorem with holography,” Phys. Rev. D 82 (2010) 046006, arXiv:1006.1263 [hep-th].
  46. T. Hartman, Y. Jiang, F. Sgarlata, and A. Tajdini, “Focusing bounds for CFT correlators and the S-matrix,” arXiv:2212.01942 [hep-th].
  47. S. L. Adler, “Einstein Gravity as a Symmetry-Breaking Effect in Quantum Field Theory,” Rev. Mod. Phys. 54 (1982) 729. [Erratum: Rev.Mod.Phys. 55, 837 (1983)].
  48. A. Zee, “Spontaneously Generated Gravity,” Phys. Rev. D 23 (1981) 858.
  49. D. Anselmi, “Kinematic sum rules for trace anomalies,” JHEP 11 (2001) 033, arXiv:hep-th/0107194.
  50. D. Baumann, D. Green, and T. Hartman, “Dynamical Constraints on RG Flows and Cosmology,” JHEP 12 (2019) 134, arXiv:1906.10226 [hep-th].
  51. J. J. Heckman and T. Rudelius, “Evidence for C-theorems in 6D SCFTs,” JHEP 09 (2015) 218, arXiv:1506.06753 [hep-th].
  52. C. Cordova, T. T. Dumitrescu, and K. Intriligator, “Anomalies, renormalization group flows, and the a-theorem in six-dimensional (1, 0) theories,” JHEP 10 (2016) 080, arXiv:1506.03807 [hep-th].
  53. A. Stergiou, D. Stone, and L. G. Vitale, “Constraints on Perturbative RG Flows in Six Dimensions,” JHEP 08 (2016) 010, arXiv:1604.01782 [hep-th].
  54. C. Cordova, T. T. Dumitrescu, and K. Intriligator, “2-Group Global Symmetries and Anomalies in Six-Dimensional Quantum Field Theories,” JHEP 04 (2021) 252, arXiv:2009.00138 [hep-th].
  55. J. J. Heckman, S. Kundu, and H. Y. Zhang, “Effective field theory of 6D SUSY RG Flows,” Phys. Rev. D 104 no. 8, (2021) 085017, arXiv:2103.13395 [hep-th].
  56. P. Kravchuk and D. Simmons-Duffin, “Light-ray operators in conformal field theory,” JHEP 11 (2018) 102, arXiv:1805.00098 [hep-th]. [,236(2018)].
  57. G. P. Korchemsky, “Energy correlations in the end-point region,” JHEP 01 (2020) 008, arXiv:1905.01444 [hep-th].
  58. C.-H. Chang, M. Kologlu, P. Kravchuk, D. Simmons-Duffin, and A. Zhiboedov, “Transverse spin in the light-ray OPE,” JHEP 05 (2022) 059, arXiv:2010.04726 [hep-th].
  59. H. Chen, I. Moult, J. Sandor, and H. X. Zhu, “Celestial blocks and transverse spin in the three-point energy correlator,” JHEP 09 (2022) 199, arXiv:2202.04085 [hep-ph].
  60. C.-H. Chang and D. Simmons-Duffin, “Three-point energy correlators and the celestial block expansion,” JHEP 02 (2, 2022) 126, arXiv:2202.04090 [hep-th].
  61. K.-W. Huang, “Stress-tensor commutators in conformal field theories near the lightcone,” Phys. Rev. D100 no. 6, (2019) 061701, arXiv:1907.00599 [hep-th].
  62. K.-W. Huang, “Lightcone Commutator and Stress-Tensor Exchange in d>2𝑑2d>2italic_d > 2 CFTs,” Phys. Rev. D 102 no. 2, (2020) 021701, arXiv:2002.00110 [hep-th].
  63. M. Beşken, J. De Boer, and G. Mathys, “On local and integrated stress-tensor commutators,” JHEP 21 (2020) 148, arXiv:2012.15724 [hep-th].
  64. G. P. Korchemsky and A. Zhiboedov, “On the light-ray algebra in conformal field theories,” JHEP 02 (2022) 140, arXiv:2109.13269 [hep-th].
  65. K.-W. Huang, “d>2𝑑2d>2italic_d > 2 stress-tensor operator product expansion near a line,” Phys. Rev. D 103 no. 12, (2021) 121702, arXiv:2103.09930 [hep-th].
  66. K.-W. Huang, “Approximate symmetries in d = 4 CFTs with an Einstein gravity dual,” JHEP 09 (2022) 053, arXiv:2202.09998 [hep-th].
  67. S. De, Y. Hu, A. Yelleshpur Srikant, and A. Volovich, “Correlators of four light-ray operators in CCFT,” JHEP 10 (2022) 170, arXiv:2206.08875 [hep-th].
  68. A. L. Fitzpatrick and K.-W. Huang, “Universal Lowest-Twist in CFTs from Holography,” JHEP 08 (2019) 138, arXiv:1903.05306 [hep-th].
  69. A. L. Fitzpatrick, K.-W. Huang, and D. Li, “Probing universalities in d >>> 2 CFTs: from black holes to shockwaves,” JHEP 11 (2019) 139, arXiv:1907.10810 [hep-th].
  70. A. L. Fitzpatrick, K.-W. Huang, D. Meltzer, E. Perlmutter, and D. Simmons-Duffin, “Model-dependence of minimal-twist OPEs in d >>> 2 holographic CFTs,” JHEP 11 (2020) 060, arXiv:2007.07382 [hep-th].
  71. K.-W. Huang, R. Karlsson, A. Parnachev, and S. Valach, “Freedom near lightcone and ANEC saturation,” JHEP 05 (2023) 065, arXiv:2210.16274 [hep-th].
  72. T. Bautista, L. Casarin, and H. Godazgar, “ANEC in λ⁢ϕ4𝜆superscriptitalic-ϕ4\lambda\phi^{4}italic_λ italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT theory,” JHEP 01 (2021) 132, arXiv:2010.02136 [hep-th].
  73. T. Bautista and L. Casarin, “ANEC on stress-tensor states in perturbative λ𝜆\lambdaitalic_λ ϕitalic-ϕ\phiitalic_ϕ44{}^{4}start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPT theory,” JHEP 01 (2023) 097, arXiv:2210.11365 [hep-th].
  74. S. Caron-Huot, M. Kologlu, P. Kravchuk, D. Meltzer, and D. Simmons-Duffin, “Detectors in weakly-coupled field theories,” JHEP 04 (2023) 014, arXiv:2209.00008 [hep-th].
  75. Z. Komargodski, M. Kulaxizi, A. Parnachev, and A. Zhiboedov, “Conformal Field Theories and Deep Inelastic Scattering,” Phys. Rev. D95 no. 6, (2017) 065011, arXiv:1601.05453 [hep-th].
  76. D. Meltzer, “Higher Spin ANEC and the Space of CFTs,” JHEP 07 (2019) 001, arXiv:1811.01913 [hep-th].
  77. G. P. Korchemsky, G. Oderda, and G. F. Sterman, “Power corrections and nonlocal operators,” AIP Conf. Proc. 407 no. 1, (1997) 988, arXiv:hep-ph/9708346.
  78. N. A. Sveshnikov and F. V. Tkachov, “Jets and quantum field theory,” Phys. Lett. B 382 (1996) 403–408, arXiv:hep-ph/9512370.
  79. A. V. Belitsky, S. Hohenegger, G. P. Korchemsky, E. Sokatchev, and A. Zhiboedov, “Energy-Energy Correlations in N=4 Supersymmetric Yang-Mills Theory,” Phys. Rev. Lett. 112 no. 7, (2014) 071601, arXiv:1311.6800 [hep-th].
  80. A. V. Belitsky, S. Hohenegger, G. P. Korchemsky, E. Sokatchev, and A. Zhiboedov, “Event shapes in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 super-Yang-Mills theory,” Nucl. Phys. B 884 (2014) 206–256, arXiv:1309.1424 [hep-th].
  81. A. V. Belitsky, S. Hohenegger, G. P. Korchemsky, E. Sokatchev, and A. Zhiboedov, “From correlation functions to event shapes,” Nucl. Phys. B 884 (2014) 305–343, arXiv:1309.0769 [hep-th].
  82. J. M. Henn, E. Sokatchev, K. Yan, and A. Zhiboedov, “Energy-energy correlation in N𝑁Nitalic_N=4 super Yang-Mills theory at next-to-next-to-leading order,” Phys. Rev. D 100 no. 3, (2019) 036010, arXiv:1903.05314 [hep-th].
  83. R. Gonzo and A. Pokraka, “Light-ray operators, detectors and gravitational event shapes,” JHEP 05 (2021) 015, arXiv:2012.01406 [hep-th].
  84. G. P. Korchemsky, E. Sokatchev, and A. Zhiboedov, “Generalizing event shapes: in search of lost collider time,” JHEP 08 (2022) 188, arXiv:2106.14899 [hep-th].
  85. H. Chen, I. Moult, X. Zhang, and H. X. Zhu, “Rethinking jets with energy correlators: Tracks, resummation, and analytic continuation,” Phys. Rev. D 102 no. 5, (2020) 054012, arXiv:2004.11381 [hep-ph].
  86. H. Epstein, V. Glaser, and A. Jaffe, “Nonpositivity of energy density in Quantized field theories,” Nuovo Cim. 36 (1965) 1016.
  87. M. Visser, “Scale anomalies imply violation of the averaged null energy condition,” Phys. Lett. B 349 (1995) 443–447, arXiv:gr-qc/9409043.
  88. D. Urban and K. D. Olum, “Averaged null energy condition violation in a conformally flat spacetime,” Phys. Rev. D 81 (2010) 024039, arXiv:0910.5925 [gr-qc].
  89. D. Meltzer, “Dispersion Formulas in QFTs, CFTs, and Holography,” JHEP 05 (2021) 098, arXiv:2103.15839 [hep-th].
  90. 1992.
  91. P. Kravchuk, J. Qiao, and S. Rychkov, “Distributions in CFT. Part II. Minkowski space,” JHEP 08 (2021) 094, arXiv:2104.02090 [hep-th].
  92. S. Deser, M. J. Duff, and C. J. Isham, “Nonlocal Conformal Anomalies,” Nucl. Phys. B 111 (1976) 45–55.
  93. M. J. Duff, “Observations on Conformal Anomalies,” Nucl. Phys. B 125 (1977) 334–348.
  94. M. J. Duff, “Twenty years of the Weyl anomaly,” Class. Quant. Grav. 11 (1994) 1387–1404, arXiv:hep-th/9308075.
  95. Y. Nakayama, “Scale invariance vs conformal invariance,” Phys. Rept. 569 (2015) 1–93, arXiv:1302.0884 [hep-th].
  96. J. Wess and B. Zumino, “Consequences of anomalous Ward identities,” Phys. Lett. B 37 (1971) 95–97.
  97. A. Schwimmer and S. Theisen, “Spontaneous Breaking of Conformal Invariance and Trace Anomaly Matching,” Nucl. Phys. B 847 (2011) 590–611, arXiv:1011.0696 [hep-th].
  98. H. Casini, E. Teste, and G. Torroba, “Relative entropy and the RG flow,” JHEP 03 (2017) 089, arXiv:1611.00016 [hep-th].
  99. V. Balasubramanian, J. J. Heckman, and A. Maloney, “Relative Entropy and Proximity of Quantum Field Theories,” JHEP 05 (2015) 104, arXiv:1410.6809 [hep-th].
  100. J. Stout, “Infinite Distance Limits and Information Theory,” arXiv:2106.11313 [hep-th].
  101. J. Erdmenger, K. T. Grosvenor, and R. Jefferson, “Towards quantifying information flows: relative entropy in deep neural networks and the renormalization group,” SciPost Phys. 12 no. 1, (2022) 041, arXiv:2107.06898 [hep-th].
  102. J. Stout, “Infinite Distances and Factorization,” arXiv:2208.08444 [hep-th].
  103. H. Osborn, “Derivation of a Four-dimensional c𝑐citalic_c Theorem,” Phys. Lett. B 222 (1989) 97–102.
  104. I. Jack and H. Osborn, “Analogs for the c𝑐citalic_c Theorem for Four-dimensional Renormalizable Field Theories,” Nucl. Phys. B 343 (1990) 647–688.
  105. I. Jack and H. Osborn, “Constraints on RG Flow for Four Dimensional Quantum Field Theories,” Nucl. Phys. B 883 (2014) 425–500, arXiv:1312.0428 [hep-th].
  106. F. Baume, B. Keren-Zur, R. Rattazzi, and L. Vitale, “The local Callan-Symanzik equation: structure and applications,” JHEP 08 (2014) 152, arXiv:1401.5983 [hep-th].
  107. G. M. Shore, The c and a-theorems and the Local Renormalisation Group. SpringerBriefs in Physics. Springer, Cham, 2017. arXiv:1601.06662 [hep-th].
  108. J. Maldacena, S. H. Shenker, and D. Stanford, “A bound on chaos,” arXiv:1503.01409 [hep-th].
  109. H. Osborn and A. Petkou, “Implications of conformal invariance in field theories for general dimensions,” Annals Phys. 231 (1994) 311–362, arXiv:hep-th/9307010 [hep-th].
  110. Graduate Texts in Contemporary Physics. Springer-Verlag, New York, 1997. http://www-spires.fnal.gov/spires/find/books/www?cl=QC174.52.C66D5::1997.
Citations (12)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.