Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

From non-local to local Navier-Stokes equations (2309.13784v2)

Published 25 Sep 2023 in math.AP

Abstract: Inspired by some experimental (numerical) works on fractional diffusion PDEs, we develop a rigorous framework to prove that solutions to the fractional Navier-Stokes equations, which involve the fractional Laplacian operator $(-\Delta){\frac{\alpha}{2}}$ with $\alpha<2$, converge to a solution of the classical case, with $-\Delta$, when $\alpha$ goes to $2$. Precisely, in the setting of mild solutions, we prove uniform convergence in both the time and spatial variables and derive a precise convergence rate, revealing some phenomenological effects. Finally, our results are also generalized to the coupled setting of the Magnetic-hydrodynamic (MHD) system.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube