Papers
Topics
Authors
Recent
Search
2000 character limit reached

Zero-One Laws for Random Feasibility Problems

Published 22 Sep 2023 in math.PR, cs.DM, and math.CO | (2309.13133v3)

Abstract: We introduce a general random model of a combinatorial optimization problem with geometric structure that encapsulates both linear programming and integer linear programming. Let $Q$ be a bounded set called the feasible set, $E$ be an arbitrary set called the constraint set, and $A$ be a random linear transform. We define and study the $\ellq$-margin, $M_q := d_q(AQ, E)$. The margin quantifies the feasibility of finding $y \in AQ$ satisfying the constraint $y \in E$. Our contribution is to establish strong concentration of the margin for any $q \in (2,\infty]$, assuming only that $E$ has permutation symmetry. The case of $q = \infty$ is of particular interest in applications -- specifically to combinatorial ``balancing'' problems -- and is markedly out of the reach of the classical isoperimetric and concentration-of-measure tools that suffice for $q \le 2$. Generality is a key feature of this result: we assume permutation symmetry of the constraint set and nothing else. This allows us to encode many optimization problems in terms of the margin, including random versions of: the closest vector problem, integer linear feasibility, perceptron-type problems, $\ellq$-combinatorial discrepancy for $2 \le q \le \infty$, and matrix balancing. Concentration of the margin implies a host of new sharp threshold results in these models, and also greatly simplifies and extends some key known results.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.