Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Review of Bayesian Methods for Infinite Factorisations (2309.12990v1)

Published 22 Sep 2023 in stat.ME

Abstract: Defining the number of latent factors has been one of the most challenging problems in factor analysis. Infinite factor models offer a solution to this problem by applying increasing shrinkage on the columns of factor loading matrices, thus penalising increasing factor dimensionality. The adaptive MCMC algorithms used for inference in such models allow to defer the dimension of the latent factor space automatically based on the data. This paper presents an overview of Bayesian models for infinite factorisations with some discussion on the properties of such models as well as their comparative advantages and drawbacks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.