Papers
Topics
Authors
Recent
2000 character limit reached

RCMS: Risk-Aware Crash Mitigation System for Autonomous Vehicles (2309.12531v1)

Published 21 Sep 2023 in cs.RO, cs.SY, and eess.SY

Abstract: We propose a risk-aware crash mitigation system (RCMS), to augment any existing motion planner (MP), that enables an autonomous vehicle to perform evasive maneuvers in high-risk situations and minimize the severity of collision if a crash is inevitable. In order to facilitate a smooth transition between RCMS and MP, we develop a novel activation mechanism that combines instantaneous as well as predictive collision risk evaluation strategies in a unified hysteresis-band approach. For trajectory planning, we deploy a modular receding horizon optimization-based approach that minimizes a smooth situational risk profile, while adhering to the physical road limits as well as vehicular actuator limits. We demonstrate the performance of our approach in a simulation environment.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. I. Isaksson-Hellman and M. Lindman, “Evaluation of rear-end collision avoidance technologies based on real world crash data,” Proceedings of the Future Active Safety Technology Towards zero traffic accidents (FASTzero), Gothenburg, Sweden, pp. 9–11, 2015.
  2. V. Milanés, J. Pérez, J. Godoy, and E. Onieva, “A fuzzy aid rear-end collision warning/avoidance system,” Expert Systems with Applications, vol. 39, no. 10, pp. 9097–9107, 2012.
  3. M. P. Huijser, T. D. Holland, A. V. Kociolek, A. M. Barkdoll, J. D. Schwalm et al., “Animal-vehicle crash mitigation using advanced technology: phase ii, system effectiveness and system acceptance.” Oregon. Dept. of Transportation. Research Unit, Tech. Rep., 2009.
  4. M. Müller, M. Botsch, D. Böhmländer, and W. Utschick, “Machine learning based prediction of crash severity distributions for mitigation strategies,” Journal of Advances in Information Technology, vol. 9, no. 1, pp. 15–24, 2018.
  5. K. Lee and D. Kum, “Collision avoidance/mitigation system: Motion planning of autonomous vehicle via predictive occupancy map,” IEEE Access, vol. 7, pp. 52 846–52 857, 2019.
  6. H. Wang, Y. Huang, A. Khajepour, Y. Zhang, Y. Rasekhipour, and D. Cao, “Crash mitigation in motion planning for autonomous vehicles,” IEEE transactions on intelligent transportation systems, vol. 20, no. 9, pp. 3313–3323, 2019.
  7. X. Shang and A. Eskandarian, “Emergency collision avoidance and mitigation using model predictive control and artificial potential function,” IEEE Transactions on Intelligent Vehicles, 2023.
  8. Y. Qin, E. Hashemi, and A. Khajepour, “Integrated crash avoidance and mitigation algorithm for autonomous vehicles,” IEEE Transactions on Industrial Informatics, vol. 17, no. 11, pp. 7246–7255, 2021.
  9. B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion planning and control techniques for self-driving urban vehicles,” IEEE Transactions on intelligent vehicles, vol. 1, no. 1, pp. 33–55, 2016.
  10. F. M. Tariq, D. Isele, J. S. Baras, and S. Bae, “Slas: Speed and lane advisory system for highway navigation,” in 2022 61st IEEE Conference on Decision and Control (CDC), 2022.
  11. F. M. Tariq, N. Suriyarachchi, C. Mavridis, and J. S. Baras, “Autonomous vehicle overtaking in a bidirectional mixed-traffic setting,” in 2022 American Control Conference (ACC).   IEEE, 2022, pp. 3132–3139.
  12. ——, “Cooperative bidirectional mixed-traffic overtaking,” in 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC).   IEEE, 2022, pp. 2494–2501.
  13. J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and dynamic vehicle models for autonomous driving control design,” in 2015 IEEE intelligent vehicles symposium (IV).   IEEE, 2015, pp. 1094–1099.
  14. Y. Gao, T. Lin, F. Borrelli, E. Tseng, and D. Hrovat, “Predictive control of autonomous ground vehicles with obstacle avoidance on slippery roads,” in Dynamic systems and control conference, vol. 44175, 2010, pp. 265–272.
  15. A. Moradipari, S. Bae, M. Alizadeh, E. M. Pari, and D. Isele, “Predicting parameters for modeling traffic participants,” in 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC).   IEEE, 2022, pp. 703–708.
  16. Y. Zhang, E. K. Antonsson, and K. Grote, “A new threat assessment measure for collision avoidance systems,” in 2006 IEEE Intelligent Transportation Systems Conference.   IEEE, 2006, pp. 968–975.
  17. P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive active steering control for autonomous vehicle systems,” IEEE Transactions on Control Systems Technology, vol. 15, no. 3, pp. 566–580, 2007.
  18. A. Azzalini and A. D. Valle, “The multivariate skew-normal distribution,” Biometrika, vol. 83, no. 4, pp. 715–726, 1996.
  19. S. Lefèvre, D. Vasquez, and C. Laugier, “A survey on motion prediction and risk assessment for intelligent vehicles,” ROBOMECH journal, vol. 1, no. 1, pp. 1–14, 2014.
  20. D. Sam, C. Velanganni, and T. E. Evangelin, “A vehicle control system using a time synchronized hybrid vanet to reduce road accidents caused by human error,” Vehicular comm., vol. 6, pp. 17–28, 2016.
  21. S. Singh, “Critical reasons for crashes investigated in the national motor vehicle crash causation survey,” Tech. Rep., 2015.
  22. A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,” Mathematical programming, vol. 106, pp. 25–57, 2006.
  23. I. S. Duff, “Sparse system solution and the hsl library,” Some topics in industrial and applied mathematics, vol. 8, pp. 78–94, 2006.
  24. J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi – A software framework for nonlinear optimization and optimal control,” Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36, 2019.
  25. A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An open urban driving simulator,” in Conference on robot learning.   PMLR, 2017, pp. 1–16.
  26. A. Kesting, M. Treiber, and D. Helbing, “General lane-changing model mobil for car-following models,” Transportation Research Record, vol. 1999, no. 1, pp. 86–94, 2007. [Online]. Available: https://doi.org/10.3141/1999-10
  27. S. Bae, D. Saxena, A. Nakhaei, C. Choi, K. Fujimura, and S. Moura, “Cooperation-aware lane change maneuver in dense traffic based on model predictive control with recurrent neural network,” in 2020 American Control Conference (ACC).   IEEE, 2020, pp. 1209–1216.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.