Papers
Topics
Authors
Recent
2000 character limit reached

Six-Vertex Model and Random Matrix Distributions (2309.12495v3)

Published 21 Sep 2023 in math-ph, math.CO, math.MP, and math.PR

Abstract: We survey the connections between the six-vertex (square ice) model of 2d statistical mechanics and random matrix theory. We highlight the same universal probability distributions appearing on both sides, and also indicate related open questions and conjectures. We present full proofs of two asymptotic theorems for the six-vertex model: in the first one the Gaussian Unitary Ensemble and GUE-corners process appear; the second one leads to the Tracy-Widom distribution $F_2$. While both results are not new, we found shorter transparent proofs for this text. On our way we introduce the key tools in the study of the six-vertex model, including the Yang-Baxter equation and the Izergin-Korepin formula.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (70)
  1. Deformed polynuclear growth in (1+1)11(1+1)( 1 + 1 ) dimensions. arXiv preprint arXiv:2108.06018, 2021.
  2. GOE fluctuations for the maximum of the top path in alternating sign matrices. arXiv preprint arXiv:2109.02422, 2021.
  3. A. Aggarwal. Correlation functions of the Schur process through Macdonald difference operators. Journal of Combinatorial Theory, Series A, 131:88–118, 2015. arXiv:1401.6979.
  4. A. Aggarwal. Arctic boundaries of the ice model on three-bundle domains. Inventiones mathematicae, 220(2):611–671, 2020.
  5. A. Aggarwal. Limit shapes and local statistics for the stochastic six-vertex model. Commun. Math. Phys., 376(1):681–746, 2020. arXiv:1902.10867.
  6. An introduction to random matrices. Cambridge University Press, 2010.
  7. A. Ahn. Airy point process via supersymmetric lifts. Probability and Mathematical Physics, 3(4):869–938, 2022. arXiv:2009.06839.
  8. G. B. Airy. On the intensity of light in the neighbourhood of a caustic.
  9. Square ice in graphene nanocapillaries. Nature, 519(7544):443–445, 2015.
  10. Y. Baryshnikov. GUEs and queues. Probab. Theory Relat. Fields, 119:256–274, 2001.
  11. R. Baxter. Exactly solved models in statistical mechanics. Courier Dover Publications, 2007.
  12. A. Borodin and I. Corwin. Macdonald processes. Probab. Theory Relat. Fields, 158:225–400, 2014. arXiv:1111.4408.
  13. Stochastic six-vertex model. Duke Math. J., 165(3):563–624, 2016. arXiv:1407.6729.
  14. A. Borodin and V. Gorin. Lectures on integrable probability. In Probability and Statistical Physics in St. Petersburg, volume 91 of Proceedings of Symposia in Pure Mathematics, pages 155–214. AMS, 2016. arXiv:1212.3351.
  15. A. Borodin and V. Gorin. Moments match between the KPZ equation and the Airy point process. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 12:102, 2016. arXiv:1608.01557.
  16. A. Bufetov and V. Gorin. Fluctuations of particle systems determined by Schur generating functions. Advances in Mathematics, 338:702–781, 2018. arXiv:1604.01110.
  17. A. Borodin. Stochastic higher spin six vertex model and Macdonald measures. Jour. Math. Phys., 59(2):023301, 2018. arXiv:1608.01553.
  18. Z. Bai and J. W. Silverstein. Spectral analysis of large dimensional random matrices. Springer Series in Statistics. Springer, New York, second edition, 2010.
  19. E. Brézin and J. Zinn-Justin. A solvable n-body problem. C. R. Acad. Sci., 263:670, 1966.
  20. Asymptotic domino statistics in the aztec diamond. The Annals of Applied Probability, 25(3):1232–1278, 2015.
  21. E. T. Copson. Asymptotic Expansions. Cambridge University Press, 1965.
  22. I. Corwin. The Kardar-Parisi-Zhang equation and universality class. Random Matrices Theory Appl., 1:1130001, 2012. arXiv:1106.1596.
  23. F. Colomo and A. Pronko. The arctic curve of the domain-wall six-vertex model. J. Stat. Phys, 138(4-5):662–700, 2010. arXiv:0907.1264.
  24. The arctic curve of the domain wall six-vertex model in its antiferroelectric regime. Journal of Statistical Mechanics: Theory and Experiment, 2010(03):L03002, 2010.
  25. F. Colomo and A. Sportiello. Arctic curves of the six-vertex model on generic domains: The tangent method. Journal of Statistical Physics, 164(6):1488–1523, jul 2016.
  26. Delocalization of the height function of the six-vertex model. arXiv preprint arXiv:2012.13750, 2020.
  27. E. Dimitrov. Two-point convergence of the stochastic six-vertex model to the airy process. Communications in Mathematical Physics, 398:925–1027, 2023. arXiv:2006.15934.
  28. A. Erdélyi. Asymptotic Expansions. Dover, New York, 1956.
  29. P. J. Forrester. Log-gases and random matrices. Princeton University Press, 2010.
  30. P.L. Ferrari and H. Spohn. Domino tilings and the six-vertex model at its free-fermion point. Jour. Phys. A, 39(33):10297, 2006. arXiv:cond-mat/0605406.
  31. A. Glazman and P. Lammers. Delocalisation and continuity in 2d: loop O(2), six-vertex, and random-cluster models. arXiv preprint arXiv:2306.01527, 2023.
  32. V. Gorin and K. Liechty. Boundary statistics for the six-vertex model with DWBC. arXiv preprint arXiv:2310.12735, 2023.
  33. Unitary representations of the classical groups. Trudy Matematicheskogo Instituta imeni VA Steklova, 36:3–288, 1950.
  34. V. Gorin. From alternating sign matrices to the Gaussian unitary ensemble. Commun. Math. Phys., 332(1):437–447, 2014. arXiv:1306.6347.
  35. V. Gorin. Lectures on random lozenge tilings. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2021.
  36. V. Gorin and G. Panova. Asymptotics of symmetric polynomials with applications to statistical mechanics and representation theory. Ann. Probab., 43(6):3052–3132, 2015. arXiv:1301.0634.
  37. A. Glazman and R. Peled. On the transition between the disordered and antiferroelectric phases of the 6-vertex model. arXiv preprint arXiv:1909.03436, 2019.
  38. L.-H. Gwa and H. Spohn. Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian. Phys. Rev. Lett., 68(6):725–728, 1992.
  39. A. G. Izergin. Partition function of the six-vertex model in a finite volume. Soviet Physics Doklady, 32:878, November 1987.
  40. M. Jimbo. Introduction to the Yang-Baxter equation. In Braid group, knot theory and statistical mechanics, II, volume 17 of Adv. Ser. Math. Phys., pages 153–176. World Sci. Publ., River Edge, NJ, 1994.
  41. K. Johansson and E. Nordenstam. Eigenvalues of GUE minors. Electron. J. Probab., 11(50):1342–1371, 2006. arXiv:math/0606760.
  42. K. Johansson. The arctic circle boundary and the Airy process. Ann. Probab., 33(1):1–30, 2005. arXiv:math/0306216.
  43. O. Kallenberg. Foundations of modern probability, 3rd edition. Springer, 2021.
  44. V. E. Korepin. Calculation of norms of Bethe wave functions. Communications in Mathematical Physics, 86(3):391 – 418, 1982.
  45. Dynamic scaling of growing interfaces. Physical Review Letters, 56(9):889, 1986.
  46. D. Keating and A. Sridhar. Random tilings with the GPU. Journal of Mathematical Physics, 59(9):091420, 2018. arXiv:1804.07250.
  47. J. Lamers. Introduction to quantum integrability. In Proceedings of 10th Modave Summer School in Mathematical Physics — PoS(Modave2014). Sissa Medialab, feb 2015.
  48. E.H. Lieb. Residual entropy of square ice. Physical Review, 162(1):162–172, 1967.
  49. Two dimensional ferroelectric models. In C. Domb and M. Green, editors, Phase Transitions and Critical Phenomena, volume 1, pages 331–490. Academic Press, 1972.
  50. I.G. Macdonald. Symmetric functions and Hall polynomials. Oxford University Press, 2nd edition, 1995.
  51. J. B. McGuire. Study of exactly soluble one-dimensional n-body problems. Journal of Mathematical Physics, 5(5):622–636, 1964.
  52. M. L. Mehta. Random matrices, volume 142 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, third edition, 2004.
  53. Y. Neretin. Rayleigh triangles and non-matrix interpolation of matrix beta integrals. Sbornik: Mathematics, 194(4):515, 2003.
  54. A. Okounkov. Infinite wedge and random partitions. Selecta Math., 7(1):57–81, 2001. arXiv:math/9907127.
  55. A. Okounkov. Generating functions for intersection numbers on moduli spaces of curves. International Mathematics Research Notices, 2002(18):933–957, 2002.
  56. G. Olshanski and A. Vershik. Ergodic unitarily invariant measures on the space of infinite Hermitian matrices. In Contemporary Mathematical Physics. F.A..Berezi’s memorial volume. American Mathematical Society Translations, (Advances in the Mathematical Sciences — 31), volume 175 of 2, pages 137–175. AMS, 1996. arXiv:math/9601215v1 [math.RT].
  57. L. Pauling. The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. Journal of the American Chemical Society, 57(12):2680–2684, 1935.
  58. L. Pastur and M. Shcherbina. Eigenvalue distribution of large random matrices, volume 171 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2011.
  59. M. Praehofer and H. Spohn. Domain wall fluctuations of the six-vertex model at the ice point. arXiv preprint arXiv:2305.09502, 2023.
  60. N. Reshetikhin. Lectures on the integrability of the 6-vertex model. In Exact Methods in Low-dimensional Statistical Physics and Quantum Computing, pages 197–266. Oxford Univ. Press, 2010. arXiv:1010.5031.
  61. N. Reshetikhin and A. Sridhar. Limit Shapes of the Stochastic Six Vertex Model. Commun. Math. Phys., 363:741–765, 2018. arXiv:1609.01756 [math-ph].
  62. S. Sodin. A limit theorem at the spectral edge for corners of time-dependent wigner matrices. International Mathematics Research Notices, 2015(17):7575–7607, 2014.
  63. A. Soshnikov. Universality at the edge of the spectrum in wigner random matrices. Communications in mathematical physics, 207:697–733, 1999.
  64. A. Soshnikov. Determinantal random point fields. Russian Mathematical Surveys, 55(5):923–975, 2000. arXiv:math/0002099.
  65. C. Tracy and H. Widom. Level-spacing distributions and the Airy kernel. Physics Letters B, 305(1):115–118, 1993. arXiv:hep-th/9210074.
  66. C. Tracy and H. Widom. Level spacing distributions and the Bessel kernel. Commun. Math. Phys., 161(2):289–309, 1994. arXiv:hep-th/9304063.
  67. C. Tracy and H. Widom. On orthogonal and symplectic matrix ensembles. Commun. Math. Phys., 177(3):727–754, 1996. arXiv:solv-int/9509007.
  68. S.O. Warnaar. Bisymmetric functions, macdonald polynomials and basic hypergeometric series. Compos. Math., 144(2):271–303, 2008. arXiv:math/0511333.
  69. C.-N. Yang. Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Physical Review Letters, 19(23):1312, 1967.
  70. The observation of square ice in graphene questioned. Nature, 528(7583):E1–E2, 2015.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: