Scalaron dynamics from UV to IR
Abstract: We consider a scenario where the scalaron of $f({\cal R})$ models is related to the volume modulus of string compactifications leaving only one scalar degree of freedom at low energy. The coefficient of the leading curvature squared contribution to the low energy effective action of gravity determines the mass of the scalaron. We impose that this mass is small enough to allow for the scalaron to drive Starobinski's inflation. After inflation, the renormalisation group evolution of the couplings of the $f({\cal R})$ theory, viewed as a scalar-tensor theory, provides the link with the Infra-Red regime. We consider a scenario where the corrections to the mass of the scalaron are large and reduce it below the electron mass in the Infra-Red, so that the scalaron plays a central role in the low energy dynamics of the Universe. In particular this leads to a connection between the scalaron mass and the measured vacuum energy provided its renormalisation group running at energies higher than the electron mass never drops below the present day value of the dark energy.
- E. J. Copeland, M. Sami and S. Tsujikawa, “Dynamics of dark energy,” Int. J. Mod. Phys. D 15 (2006), 1753-1936 [arXiv:hep-th/0603057 [hep-th]].
- A. Joyce, B. Jain, J. Khoury and M. Trodden, “Beyond the Cosmological Standard Model,” Phys. Rept. 568 (2015), 1-98 [arXiv:1407.0059 [astro-ph.CO]].
- P. Brax, “What makes the Universe accelerate? A review on what dark energy could be and how to test it,” Rept. Prog. Phys. 81 (2018) no.1, 016902
- T. P. Sotiriou and V. Faraoni, “f(R) Theories Of Gravity,” Rev. Mod. Phys. 82 (2010), 451-497 [arXiv:0805.1726 [gr-qc]].
- M. Fierz and W. Pauli, “On relativistic wave equations for particles of arbitrary spin in an electromagnetic field,” Proc. Roy. Soc. Lond. A 173 (1939), 211-232
- C. de Rham, “Massive Gravity,” Living Rev. Rel. 17 (2014), 7 [arXiv:1401.4173 [hep-th]].
- M. Brinkmann, M. Cicoli and P. Zito, “Starobinsky inflation from string theory?,” JHEP 09 (2023), 038 [arXiv:2305.05703 [hep-th]].
- P. Brax, P. Valageas and P. Vanhove, “R2superscript𝑅2R^{2}italic_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT Dark Energy in the Laboratory,” Phys. Rev. D 97 (2018) no.10, 103508 [arXiv:1711.03356 [astro-ph.CO]].
- P. Brax, P. Valageas and P. Vanhove, “New Bounds on Dark Energy Induced Fifth Forces,” Phys. Rev. D 99 (2019) no.6, 064010 [arXiv:1902.07555 [astro-ph.CO]].
- C. P. Burgess, M. Cicoli, S. de Alwis and F. Quevedo, “Robust Inflation from Fibrous Strings,” JCAP 05 (2016), 032 [arXiv:1603.06789 [hep-th]].
- S. Ferrara and S. Sabharwal, “Dimensional Reduction of Type II Superstrings,” Class. Quant. Grav. 6 (1989), L77
- B. Bertotti, L. Iess and P. Tortora, “A test of general relativity using radio links with the Cassini spacecraft,” Nature 425 (2003), 374-376
- P. Brax, S. Casas, H. Desmond and B. Elder, “Testing Screened Modified Gravity,” Universe 8 (2021) no.1, 11 [arXiv:2201.10817 [gr-qc]].
- M. Cicoli, J. P. Conlon, A. Maharana, S. Parameswaran, F. Quevedo and I. Zavala, “String Cosmology: from the Early Universe to Today,” [arXiv:2303.04819 [hep-th]].
- J. G. Lee, E. G. Adelberger, T. S. Cook, S. M. Fleischer and B. R. Heckel, “New Test of the Gravitational 1/r21superscript𝑟21/r^{2}1 / italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT Law at Separations down to 52 μ𝜇\muitalic_μm,” Phys. Rev. Lett. 124 (2020) no.10, 101101 [arXiv:2002.11761 [hep-ex]].
- A. A. Starobinsky, “A New Type of Isotropic Cosmological Models Without Singularity,” Phys. Lett. B 91 (1980), 99-102
- A. A. Starobinsky, “Nonsingular Model Of The Universe With The Quantum Gravitational De Sitter Stage And Its Observational Consequences,” Second Seminar on Quantum Gravity (1981) 103-128.
- K. S. Stelle, “Classical Gravity with Higher Derivatives,” Gen. Rel. Grav. 9 (1978), 353-371
- S. Weinberg, “The Cosmological Constant Problem,” Rev. Mod. Phys. 61 (1989), 1-23
- Y. Shtanov, “Light scalaron as dark matter,” Phys. Lett. B 820 (2021), 136469 [arXiv:2105.02662 [hep-ph]].
- M. Cicoli, F. Muia and F. G. Pedro, “Microscopic Origin of Volume Modulus Inflation,” JCAP 12 (2015), 040 [arXiv:1509.07748 [hep-th]].
- S. P. Otero, F. G. Pedro and C. Wieck, “R+αRn𝑅𝛼superscript𝑅𝑛R+\alpha R^{n}italic_R + italic_α italic_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT Inflation in higher-dimensional Space-times,” JHEP 05 (2017), 058 [arXiv:1702.08311 [hep-th]].
- S. Weinberg, “The quantum theory of fields. Vol. 3: Supersymmetry,” Cambridge University Press, 2013, ISBN 978-0-521-67055-5, 978-1-139-63263-8, 978-0-521-67055-5
- I. Antoniadis, R. Minasian, S. Theisen and P. Vanhove, “String loop corrections to the universal hypermultiplet,” Class. Quant. Grav. 20 (2003), 5079-5102 [arXiv:hep-th/0307268 [hep-th]].
- C. Wetterich, “The Cosmon model for an asymptotically vanishing time dependent cosmological ’constant’,” Astron. Astrophys. 301 (1995), 321-328 [arXiv:hep-th/9408025 [hep-th]].
- A. Gregori, E. Kiritsis, C. Kounnas, N. A. Obers, P. M. Petropoulos and B. Pioline, “R2superscript𝑅2R^{2}italic_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT Corrections and Non-Perturbative Dualities of 𝒩=4𝒩4{\mathcal{N}}\!=4caligraphic_N = 4 String Ground States,” Nucl. Phys. B 510 (1998) 423 [arXiv:hep-th/9708062].
- J. A. Harvey and G. W. Moore, “Five-Brane Instantons and R2superscript𝑅2R^{2}italic_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT Couplings in 𝒩=4𝒩4{\mathcal{N}}\!=4caligraphic_N = 4 String Theory,” Phys. Rev. D 57 (1998) 2323 [hep-th/9610237].
- A. A. Tseytlin, “Ambiguity in the Effective Action in String Theories,” Phys. Lett. B 176 (1986), 92-98
- K. Forger, B. A. Ovrut, S. J. Theisen and D. Waldram, “Higher Derivative Gravity in String Theory,” Phys. Lett. B 388 (1996), 512-520 [arXiv:hep-th/9605145 [hep-th]].
- J. Wess and J. Bagger, “Supersymmetry and Supergravity”, Princeton University Press 1983
- H. Georgi, “Effective Field Theory,” Ann. Rev. Nucl. Part. Sci. 43 (1993), 209-252
- A. V. Manohar, “Introduction to Effective Field Theories,” [arXiv:1804.05863 [hep-ph]].
- M. Neubert, “Renormalization Theory and Effective Field Theories,” [arXiv:1901.06573 [hep-ph]].
- C. P. Burgess, “Introduction to Effective Field Theory,” Cambridge University Press, 2020, ISBN 978-1-139-04804-0, 978-0-521-19547-8
- E. Giusarma, M. Gerbino, O. Mena, S. Vagnozzi, S. Ho and K. Freese, “Improvement of cosmological neutrino mass bounds,” Phys. Rev. D 94 (2016) no.8, 083522 [arXiv:1605.04320 [astro-ph.CO]].
- S. Vagnozzi, E. Giusarma, O. Mena, K. Freese, M. Gerbino, S. Ho and M. Lattanzi, “Unveiling ν𝜈\nuitalic_ν secrets with cosmological data: neutrino masses and mass hierarchy,” Phys. Rev. D 96 (2017) no.12, 123503 [arXiv:1701.08172 [astro-ph.CO]].
- E. Giusarma, S. Vagnozzi, S. Ho, S. Ferraro, K. Freese, R. Kamen-Rubio and K. B. Luk, “Scale-dependent galaxy bias, CMB lensing-galaxy cross-correlation, and neutrino masses,” Phys. Rev. D 98 (2018) no.12, 123526 [arXiv:1802.08694 [astro-ph.CO]].
- E. Di Valentino and A. Melchiorri, “Neutrino Mass Bounds in the Era of Tension Cosmology,” Astrophys. J. Lett. 931 (2022) no.2, L18 [arXiv:2112.02993 [astro-ph.CO]].
- I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, “Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity,” JHEP 1701 (2017) 087 [arXiv:1611.01514].
- C. D. Hoyle, D. J. Kapner, B. R. Heckel, E. G. Adelberger, J. H. Gundlach, U. Schmidt and H. E. Swanson, “Sub-millimeter tests of the gravitational inverse-square law,” Phys. Rev. D 70 (2004), 042004 [arXiv:hep-ph/0405262 [hep-ph]].
- D. J. Kapner, T. S. Cook, E. G. Adelberger, J. H. Gundlach, B. R. Heckel, C. D. Hoyle and H. E. Swanson, “Tests of the gravitational inverse-square law below the dark-energy length scale,” Phys. Rev. Lett. 98 (2007), 021101 [arXiv:hep-ph/0611184 [hep-ph]].
- J. A. R. Cembranos, “Dark Matter from R2-gravity,” Phys. Rev. Lett. 102 (2009), 141301 [arXiv:0809.1653 [hep-ph]].
- J. A. R. Cembranos, “Modified gravity and dark matter,” J. Phys. Conf. Ser. 718 (2016) no.3, 032004 [arXiv:1512.08752 [hep-ph]].
- Y. Shtanov, “Initial conditions for the scalaron dark matter,” JCAP 10 (2022), 079 [arXiv:2207.00267 [astro-ph.CO]].
- C. Wetterich, “Cosmology and the Fate of Dilatation Symmetry,” Nucl. Phys. B 302 (1988), 668-696 [arXiv:1711.03844 [hep-th]].
- J. Zinn-Justin, “Quantum field theory and critical phenomena,” Int. Ser. Monogr. Phys. 113 (2002), 1-1054
- A. A. Starobinsky and J. Yokoyama, “Equilibrium state of a selfinteracting scalar field in the De Sitter background,” Phys. Rev. D 50 (1994), 6357-6368 [arXiv:astro-ph/9407016 [astro-ph]].
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.