Gravitational Wave imprints of the Doublet Left-Right Symmetric Model (2309.12023v2)
Abstract: We study the gravitational wave (GW) signature in the doublet left-right symmetric model (DLRSM) resulting from the strong first-order phase transition (SFOPT) associated with $SU(2)R\times U(1){B-L}$-breaking. For different values of the symmetry-breaking scale $v_R =20,~30$, and $50$ TeV, we construct the one-loop finite temperature effective potential to explore the parameter space for regions showing SFOPT. We identify the region where the associated stochastic GW background is strong enough to be detected at planned GW observatories. A strong GW background favors a relatively light neutral CP-even scalar $H_{3}$, arising from the $SU(2)_R$ doublet. The $SU(2)_L$ subgroup of DLRSM is broken by three vevs: $\kappa_1,~\kappa_2$, and $v_L$. We observe a preference for $\mathcal{O}(1)$ values of the ratio $w=v_L/\kappa_1$, but no clear preference for the ratio $r=\kappa_2/\kappa_1$. A large number of points with strong GW background can be ruled out from precise measurement of the trilinear Higgs coupling and searches for $H_3$ at future colliders.
- Lepton Number as the Fourth Color. Phys. Rev. D, 10:275–289, 1974. [Erratum: Phys.Rev.D 11, 703–703 (1975)].
- A Natural Left-Right Symmetry. Phys. Rev. D, 11:2558, 1975.
- Left-right gauge symmetry and an ”isoconjugate” model of CPCP\mathrm{CP}roman_CP violation. Phys. Rev. D, 11:566–571, Feb 1975.
- G. Senjanovic and Rabindra N. Mohapatra. Exact Left-Right Symmetry and Spontaneous Violation of Parity. Phys. Rev. D, 12:1502, 1975.
- Goran Senjanovic. Spontaneous Breakdown of Parity in a Class of Gauge Theories. Nucl. Phys. B, 153:334–364, 1979.
- Higgs sector of the minimal left-right symmetric theory. Phys. Rev. D, 95(9):095004, 2017.
- Left-right-symmetric electroweak models with triplet higgs field. Phys. Rev. D, 44:837–858, Aug 1991.
- Goran Senjanovic. Is left–right symmetry the key? Mod. Phys. Lett. A, 32(04):1730004, 2017.
- J. Schechter and J. W. F. Valle. Neutrino Decay and Spontaneous Violation of Lepton Number. Phys. Rev. D, 25:774, 1982.
- Gauge Theories of Weak Interactions with Left-Right Symmetry and the Structure of Neutral Currents. Phys. Rev. D, 16:2843, 1977.
- Radiatively Induced Seesaw Mechanism for Neutrino Masses. Phys. Rev. D, 38:3550, 1988.
- Simple Left-Right Theory: Lepton Number Violation at the LHC. Phys. Rev. D, 94(5):051701, 2016.
- Lepton Flavour Violation in Left-Right Theory. Phys. Rev. D, 95(7):075010, 2017.
- Left-Right Symmetric Model without Higgs Triplets. 12 2020.
- Ernest Ma. Dark-Matter Fermion from Left-Right Symmetry. Phys. Rev. D, 85:091701, 2012.
- Exploring 0νββ0𝜈𝛽𝛽0\nu\beta\beta0 italic_ν italic_β italic_β and leptogenesis in the alternative left-right model. Phys. Rev. D, 102(7):075020, 2020.
- Gravitational wave imprints of left-right symmetric model with minimal Higgs sector. JCAP, 05(05):003, 2022.
- Dynamical left-right symmetry breaking. Phys. Rev. D, 53:2752–2780, 1996.
- B. P. Abbott et al. Observation of gravitational waves from a binary black hole merger. Physical Review Letters, 116(6), feb 2016.
- Pau Amaro-Seoane et al. Laser Interferometer Space Antenna. 2 2017.
- Possibility of direct measurement of the acceleration of the universe using 0.1-Hz band laser interferometer gravitational wave antenna in space. Phys. Rev. Lett., 87:221103, 2001.
- Detecting the cosmic gravitational wave background with the big bang observer. Class. Quant. Grav., 23:2435–2446, 2006.
- M. Punturo et al. The Einstein Telescope: A third-generation gravitational wave observatory. Class. Quant. Grav., 27:194002, 2010.
- Benjamin P Abbott et al. Exploring the Sensitivity of Next Generation Gravitational Wave Detectors. Class. Quant. Grav., 34(4):044001, 2017.
- Chiara Caprini et al. Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions. JCAP, 04:001, 2016.
- Cosmological phase transitions: from perturbative particle physics to gravitational waves. 5 2023.
- Pierre Auclair et al. Cosmology with the Laser Interferometer Space Antenna. Living Rev. Rel., 26(1):5, 2023.
- Cosmological Backgrounds of Gravitational Waves. Class. Quant. Grav., 35(16):163001, 2018.
- P. S. Bhupal Dev and A. Mazumdar. Probing the Scale of New Physics by Advanced LIGO/VIRGO. Phys. Rev. D, 93(10):104001, 2016.
- Probing Trans-electroweak First Order Phase Transitions from Gravitational Waves. MDPI Physics, 1(1):92–102, 2019.
- Dhruv Ringe. Probing intermediate scale Froggatt-Nielsen models at future gravitational wave observatories. Phys. Rev. D, 107(1):015030, 2023.
- Gravitational Waves as a Probe of Left-Right Symmetry Breaking. JCAP, 12:027, 2019.
- Prospects of gravitational waves in the minimal left-right symmetric model. JHEP, 03:267, 2021.
- Probing left-right symmetry via gravitational waves from domain walls. Phys. Rev. D, 106(3):035016, 2022.
- Constraining the gauge and scalar sectors of the doublet left-right symmetric model. JHEP, 09:088, 2020.
- Constraints on the doublet left-right symmetric model from Higgs data. JHEP, 03:168, 2023.
- Unification, Proton Decay and Topological Defects in non-SUSY GUTs with Thresholds. Phys. Rev. D, 99(9):095008, 2019.
- Spontaneously broken parity and consistent cosmology with transitory domain walls. Phys. Rev. D, 81:045010, 2010.
- Spontaneous R-parity breaking, Left-Right Symmetry and Consistent Cosmology with Transitory Domain Walls. Phys. Rev. D, 84:055008, 2011.
- Domain walls and CP violation with left right supersymmetry: implications for leptogenesis and electron EDM. JHEP, 07:039, 2021.
- Left-Right Symmetry Breaking and Gravitational Waves : A Tale of Two Phase Transitions. 12 2022.
- General CP Violation in Minimal Left-Right Symmetric Model and Constraints on the Right-Handed Scale. Nucl. Phys. B, 802:247–279, 2008.
- Probing the Higgs Sector of the Minimal Left-Right Symmetric Model at Future Hadron Colliders. JHEP, 05:174, 2016.
- Direct bounds on Left-Right gauge boson masses at LHC Run 2. 9 2023.
- Serguei Chatrchyan et al. Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B, 716:30–61, 2012.
- A combination of measurements of Higgs boson production and decay using up to 139139139139 fb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of proton–proton collision data at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV collected with the ATLAS experiment. 8 2020.
- Constraints on the Higgs boson self-coupling from the combination of single-Higgs and double-Higgs production analyses performed with the ATLAS experiment. 10 2019.
- Mariano Quiros. Finite temperature field theory and phase transitions. In ICTP Summer School in High-Energy Physics and Cosmology, pages 187–259, 1 1999.
- Basics of Thermal Field Theory, volume 925. Springer, 2016.
- Radiative Corrections as the Origin of Spontaneous Symmetry Breaking. Phys. Rev. D, 7:1888–1910, 1973.
- L. Dolan and R. Jackiw. Symmetry Behavior at Finite Temperature. Phys. Rev. D, 9:3320–3341, 1974.
- Electroweak phase transition in two higgs doublet models. Physical Review D, 55(6):3873–3881, mar 1997.
- M. E. Carrington. The Effective potential at finite temperature in the Standard Model. Phys. Rev. D, 45:2933–2944, 1992.
- Rajesh R. Parwani. Resummation in a hot scalar field theory. Phys. Rev. D, 45:4695, 1992. [Erratum: Phys.Rev.D 48, 5965 (1993)].
- Effective potential and first-order phase transitions: Beyond leading order. Phys. Rev. D, 47:3546–3579, Apr 1993.
- Steven Weinberg. Gauge and Global Symmetries at High Temperature. Phys. Rev. D, 9:3357–3378, 1974.
- Can A Pseudo-Nambu-Goldstone Higgs Lead To Symmetry Non-Restoration? JHEP, 01:002, 2016.
- Unrestored Electroweak Symmetry. Phys. Rev. Lett., 122(4):041802, 2019.
- Andrei D. Linde. Dynamical Symmetry Restoration and Constraints on Masses and Coupling Constants in Gauge Theories. JETP Lett., 23:64–67, 1976.
- Steven Weinberg. Mass of the Higgs Boson. Phys. Rev. Lett., 36:294–296, 1976.
- Carroll L. Wainwright. CosmoTransitions: Computing Cosmological Phase Transition Temperatures and Bubble Profiles with Multiple Fields. Comput. Phys. Commun., 183:2006–2013, 2012.
- M. Quiros. Field theory at finite temperature and phase transitions. Helv. Phys. Acta, 67:451–583, 1994.
- Baryon Washout, Electroweak Phase Transition, and Perturbation Theory. JHEP, 07:029, 2011.
- Electroweak phase transition in the Z33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT-invariant NMSSM: Implications of LHC and Dark matter searches and prospects of detecting the gravitational waves. JHEP, 06:108, 2022.
- Andrei D. Linde. Fate of the False Vacuum at Finite Temperature: Theory and Applications. Phys. Lett. B, 100:37–40, 1981.
- Gravitational Waves from Pati-Salam Dynamics. Phys. Rev. D, 102(9):095025, 2020.
- Energy Budget of Cosmological First-order Phase Transitions. JCAP, 06:028, 2010.
- N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys., 641:A6, 2020. [Erratum: Astron.Astrophys. 652, C4 (2021)].
- Phase Transitions in an Expanding Universe: Stochastic Gravitational Waves in Standard and Non-Standard Histories. JCAP, 01:001, 2021.
- Sensitivity curves for searches for gravitational-wave backgrounds. Phys. Rev. D, 88(12):124032, 2013.
- Prospects of determination of reheating temperature after inflation by DECIGO. PTEP, 2015(1):013E02, 2015.
- Kai Schmitz. New Sensitivity Curves for Gravitational-Wave Experiments, February 2020.
- J. de Blas et al. Higgs Boson Studies at Future Particle Colliders. JHEP, 01:139, 2020.
- Bubble wall velocity in a first order electroweak phase transition. Phys. Rev. Lett., 75:777–780, 1995.
- How fast can the wall move? A Study of the electroweak phase transition dynamics. Phys. Rev. D, 52:7182–7204, 1995.
- Can electroweak bubble walls run away? JCAP, 05:009, 2009.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.