Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A symmetric monoidal Comparison Lemma (2309.11444v3)

Published 20 Sep 2023 in math.CT

Abstract: In this note we study symmetric monoidal functors from a symmetric monoidal 1-category to a cartesian symmetric monoidal $\infty$-category, which are in addition hypersheaves for a certain topology. We prove a symmetric monoidal version of the Comparison Lemma, for lax as well as strong symmetric monoidal hypersheaves. For a strong symmetric monoidal functor between symmetric monoidal 1-categories with topologies generated by suitable cd-structures, we show that if the conditions of the Comparison Lemma are satisfied, then there is also an equivalence between categories of lax and strong symmetric monoidal hypersheaves respectively, taking values in a complete cartesian symmetric monoidal $\infty$-category. As an application of this result, we prove a lax symmetric monoidal version of our previous result about hypersheaves that encode compactly supported cohomology theories.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.