Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decentralized Online Learning in Task Assignment Games for Mobile Crowdsensing (2309.10594v1)

Published 19 Sep 2023 in cs.SI, cs.AI, and cs.LG

Abstract: The problem of coordinated data collection is studied for a mobile crowdsensing (MCS) system. A mobile crowdsensing platform (MCSP) sequentially publishes sensing tasks to the available mobile units (MUs) that signal their willingness to participate in a task by sending sensing offers back to the MCSP. From the received offers, the MCSP decides the task assignment. A stable task assignment must address two challenges: the MCSP's and MUs' conflicting goals, and the uncertainty about the MUs' required efforts and preferences. To overcome these challenges a novel decentralized approach combining matching theory and online learning, called collision-avoidance multi-armed bandit with strategic free sensing (CA-MAB-SFS), is proposed. The task assignment problem is modeled as a matching game considering the MCSP's and MUs' individual goals while the MUs learn their efforts online. Our innovative "free-sensing" mechanism significantly improves the MU's learning process while reducing collisions during task allocation. The stable regret of CA-MAB-SFS, i.e., the loss of learning, is analytically shown to be bounded by a sublinear function, ensuring the convergence to a stable optimal solution. Simulation results show that CA-MAB-SFS increases the MUs' and the MCSP's satisfaction compared to state-of-the-art methods while reducing the average task completion time by at least 16%.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. Statista, “Forecast number of mobile devices worldwide from 2020 to 2025 (in billions),” https://www.statista.com/statistics/245501/multiple-mobile-device-ownership-worldwide/, accessed: 28.07.2022, 2021.
  2. A. Capponi, C. Fiandrino, B. Kantarci, L. Foschini, D. Kliazovich, and P. Bouvry, “A Survey on Mobile Crowdsensing Systems: Challenges, Solutions, and Opportunities,” IEEE Commun. Surveys & Tutorials, vol. 21, no. 3, pp. 2419–2465, Apr. 2019.
  3. J. Nie, J. Luo, Z. Xiong, D. Niyato, and P. Wang, “A Stackelberg Game Approach Toward Socially-Aware Incentive Mechanisms for Mobile Crowdsensing,” IEEE Trans. Wireless Commun., vol. 18, no. 1, pp. 724–738, Dec. 2019.
  4. H. Ma, D. Zhao, and P. Yuan, “Opportunities in mobile crowd sensing,” IEEE Commun. Mag., vol. 52, no. 8, pp. 29–35, Aug. 2014.
  5. W. Gong, B. Zhang, and C. Li, “Task Assignment in Mobile Crowdsensing: Present and Future Directions,” IEEE Network, vol. 32, no. 4, pp. 100–107, Mar. 2018.
  6. S. Dongare, A. Ortiz, and A. Klein, “Deep reinforcement learning for task allocation in energy harvesting mobile crowdsensing,” in Proc. of the IEEE Global Commun. Conf. (GLOBECOM), Rio de Janeiro, Dec. 2022, pp. 269–274.
  7. Z. Wang, J. Hu, R. Lv, J. Wei, Q. Wang, D. Yang, and H. Qi, “Personalized Privacy-Preserving Task Allocation for Mobile Crowdsensing,” IEEE Trans. Mobile Computing, vol. 18, no. 6, pp. 1330–1341, Jul. 2019.
  8. K. Ahuja and M. V. d. Schaar, “Dynamic matching and allocation of tasks,” ACM Trans. Economics and Computation, vol. 7, no. 4, pp. 1–27, Oct. 2019.
  9. J. Wang, L. Wang, Y. Wang, D. Zhang, and L. Kong, “Task Allocation in Mobile Crowd Sensing: State-of-the-Art and Future Opportunities,” IEEE Internet of Things J., vol. 5, no. 5, pp. 3747–3757, Aug. 2018.
  10. X. Gong, X. Chen, J. Zhang, and H. V. Poor, “Exploiting Social Trust Assisted Reciprocity (STAR) Toward Utility-Optimal Socially-Aware Crowdsensing,” IEEE Trans. on Signal and Information Processing over Networks, vol. 1, no. 3, pp. 195–208, Aug. 2015.
  11. M. Karaliopoulos, O. Telelis, and I. Koutsopoulos, “User recruitment for mobile crowdsensing over opportunistic networks,” in Proc. of the IEEE Conf. on Computer Commun. (INFOCOM), Hong Kong, China, Apr. 2015, pp. 2254–2262.
  12. F. Yucel and E. Bulut, “Online Stable Task Assignment in Opportunistic Mobile Crowdsensing With Uncertain Trajectories,” IEEE Internet of Things J., vol. 9, no. 11, pp. 9086–9101, Oct. 2022.
  13. B. Simon, S. Dongare, T. Mahn, A. Ortiz, and A. Klein, “Delay- and Incentive-Aware Crowdsensing: A Stable Matching Approach for Coverage Maximization,” in Proc. of the IEEE Int. Conf. Commun. (ICC), Seoul, May 2022.
  14. Y. Wang, Z. Cai, Z.-H. Zhan, Y.-J. Gong, and X. Tong, “An Optimization and Auction-Based Incentive Mechanism to Maximize Social Welfare for Mobile Crowdsourcing,” IEEE Trans. Computational Social Syst., vol. 6, no. 3, pp. 414–429, Apr. 2019.
  15. M. Xiao, J. Wu, L. Huang, R. Cheng, and Y. Wang, “Online Task Assignment for Crowdsensing in Predictable Mobile Social Networks,” IEEE Trans. Mobile Computing, vol. 16, no. 8, pp. 2306–2320, Oct. 2017.
  16. X. Wang, R. Jia, X. Tian, and X. Gan, “Dynamic Task Assignment in Crowdsensing with Location Awareness and Location Diversity,” in Proc. of the IEEE Conf. on Computer Commun. (INFOCOM), Honolulu, USA, Apr. 2018, pp. 2420–2428.
  17. J. Zhang and X. Zhang, “Multi-Task Allocation in Mobile Crowd Sensing with Mobility Prediction,” IEEE Trans. on Mobile Computing, pp. 1081–1094, Jun. 2021.
  18. H. Gao, H. Xu, L. Li, C. Zhou, H. Zhai, Y. Chen, and Z. Han, “Mean Field Game based Dynamic Task Pricing in Mobile Crowd Sensing,” IEEE Internet of Things J., pp. 18 098–18 112, Sep. 2022.
  19. M. Xiao, B. An, J. Wang, G. Gao, S. Zhang, and J. Wu, “CMAB-based Reverse Auction for Unknown Worker Recruitment in Mobile Crowdsensing,” IEEE Trans. Mobile Computing, pp. 3502–3518, Feb. 2021.
  20. A. Magesh and V. V. Veeravalli, “Decentralized Heterogeneous Multi-Player Multi-Armed Bandits With Non-Zero Rewards on Collisions,” IEEE Trans. on Information Theory, vol. 68, no. 4, pp. 2622–2634, Dec. 2022.
  21. C. Shi and C. Shen, “Multi-player multi-armed bandits with collision-dependent reward distributions,” IEEE Trans. on Signal Processing, vol. 69, pp. 4385–4402, Jul. 2021.
  22. L. T. Liu, F. Ruan, H. Mania, and M. I. Jordan, “Bandit Learning in Decentralized Matching Markets.” J. Mach. Learn. Res., vol. 22, pp. 1–50, Sep. 2021.
  23. L. T. Liu, H. Mania, and M. Jordan, “Competing Bandits in Matching Markets,” in Proc. of the Twenty Third Int. Conf. on Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning Research, S. Chiappa and R. Calandra, Eds., vol. 108.   PMLR, 26–28 Aug 2020, pp. 1618–1628. [Online]. Available: https://proceedings.mlr.press/v108/liu20c.html
  24. M. H. Cheung, F. Hou, J. Huang, and R. Southwell, “Distributed Time-Sensitive Task Selection in Mobile Crowdsensing,” IEEE Trans. on Mobile Computing, vol. 20, no. 6, pp. 2172–2185, Feb. 2021.
  25. Y. Huang, H. Chen, G. Ma, K. Lin, Z. Ni, N. Yan, and Z. Wang, “OPAT: Optimized Allocation of Time-Dependent Tasks for Mobile Crowdsensing,” IEEE Trans. on Industrial Informatics, vol. 18, no. 4, pp. 2476–2485, Jul. 2022.
  26. A. Capponi, C. Fiandrino, D. Kliazovich, P. Bouvry, and S. Giordano, “A cost-effective distributed framework for data collection in cloud-based mobile crowd sensing architectures,” IEEE Trans. on Sustainable Computing, vol. 2, no. 1, pp. 3–16, Feb. 2017.
  27. G. Gao, J. Wu, M. Xiao, and G. Chen, “Combinatorial Multi-Armed Bandit Based Unknown Worker Recruitment in Heterogeneous Crowdsensing,” in Proc. of the IEEE Conf. on Computer Commun. (INFOCOM), Toronto, Canada, Jul. 2020, pp. 179–188.
  28. Y. Gu, W. Saad, M. Bennis, M. Debbah, and Z. Han, “Matching theory for future wireless networks: fundamentals and applications,” IEEE Commun. Magazine, vol. 53, no. 5, pp. 52–59, May 2015.
  29. L. S. Shapley and M. Shubik, “The Assignment Game I: The Core,” Int. J. Game Theory, vol. 1, no. 1, p. 111–130, Dec. 1971. [Online]. Available: https://doi.org/10.1007/BF01753437
  30. S. H. Cen and D. Shah, “Regret, stability & fairness in matching markets with bandit learners,” in Proc. of the Int. Conf. on Artificial Intelligence and Statistics (AISTATS), Valencia, Spain, Mar. 2022, pp. 8938–8968.
  31. A. E. Roth, “Deferred acceptance algorithms: History, theory, practice, and open questions,” Int. Journal of Game Theory, vol. 36, no. 3, pp. 537–569, Jan. 2008.
  32. P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed bandit problem,” Machine learning, vol. 47, no. 2, pp. 235–256, May 2002.
  33. T. Mahn and A. Klein, “A Global Orchestration Matching Framework for Energy-Efficient Multi-Access Edge Computing,” in Proc. of the IEEE Int. Conf. on Cloud Networking (CloudNet), Cookeville, USA, Nov. 2021, pp. 11–18.
  34. L. Perron and V. Furnon, “OR-Tools,” Google. [Online]. Available: https://developers.google.com/optimization/, accessed: 30.7.2022
Citations (3)

Summary

We haven't generated a summary for this paper yet.