Diversity-Based Recruitment in Crowdsensing By Combinatorial Multi-Armed Bandits (2312.15729v1)
Abstract: This paper explores mobile crowdsensing, which leverages mobile devices and their users for collective sensing tasks under the coordination of a central requester. The primary challenge here is the variability in the sensing capabilities of individual workers, which are initially unknown and must be progressively learned. In each round of task assignment, the requester selects a group of workers to handle specific tasks. This process inherently leads to task overlaps in the same round and repetitions across rounds. We propose a novel model that enhances task diversity over the rounds by dynamically adjusting the weight of tasks in each round based on their frequency of assignment. Additionally, it accommodates the variability in task completion quality caused by overlaps in the same round, which can range from the maximum individual worker's quality to the summation of qualities of all assigned workers in the overlap. A significant constraint in this process is the requester's budget, which demands an efficient strategy for worker recruitment. Our solution is to maximize the overall weighted quality of tasks completed in each round. We employ a combinatorial multi-armed bandit framework with an upper confidence bound approach for this purpose. The paper further presents a regret analysis and simulations using realistic data to demonstrate the efficacy of our model.
- Peng, S., Zhang, B., Yan, Y., & Li, C. (2023). A Multi-Platform Cooperation based Task Assignment Mechanism for Mobile Crowdsensing. IEEE Internet of Things Journal. [3] Dasari, V. S., Kantarci, B., Pouryazdan, M., Foschini, L., & Girolami, M. (2020). Game theory in mobile crowdsensing: A comprehensive survey. Sensors, 20(7), 2055. [4] Liu, J., Shen, H., Narman, H. S., Chung, W., & Lin, Z. (2018). A survey of mobile crowdsensing techniques: A critical component for the internet of things. ACM Transactions on Cyber-Physical Systems, 2(3), 1-26. [5] Zhao, H., Xiao, M., Wu, J., Xu, Y., Huang, H., & Zhang, S. (2020). Differentially private unknown worker recruitment for mobile crowdsensing using multi-armed bandits. IEEE Transactions on Mobile Computing, 20(9), 2779-2794. [6] Sawwan, A., & Wu, J. (2023, May). A New Framework: Short-Term and Long-Term Returns in Stochastic Multi-Armed Bandit. In 42th IEEE International Conference on Computer Communications (IEEE INFOCOM 2023). [7] Wu, C., Zhu, Y., Zhang, R., Chen, Y., Wang, F., & Cui, S. (2023). FedAB: Truthful Federated Learning with Auction-based Combinatorial Multi-Armed Bandit. IEEE Internet of Things Journal. [8] Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Dasari, V. S., Kantarci, B., Pouryazdan, M., Foschini, L., & Girolami, M. (2020). Game theory in mobile crowdsensing: A comprehensive survey. Sensors, 20(7), 2055. [4] Liu, J., Shen, H., Narman, H. S., Chung, W., & Lin, Z. (2018). A survey of mobile crowdsensing techniques: A critical component for the internet of things. ACM Transactions on Cyber-Physical Systems, 2(3), 1-26. [5] Zhao, H., Xiao, M., Wu, J., Xu, Y., Huang, H., & Zhang, S. (2020). Differentially private unknown worker recruitment for mobile crowdsensing using multi-armed bandits. IEEE Transactions on Mobile Computing, 20(9), 2779-2794. [6] Sawwan, A., & Wu, J. (2023, May). A New Framework: Short-Term and Long-Term Returns in Stochastic Multi-Armed Bandit. In 42th IEEE International Conference on Computer Communications (IEEE INFOCOM 2023). [7] Wu, C., Zhu, Y., Zhang, R., Chen, Y., Wang, F., & Cui, S. (2023). FedAB: Truthful Federated Learning with Auction-based Combinatorial Multi-Armed Bandit. IEEE Internet of Things Journal. [8] Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Liu, J., Shen, H., Narman, H. S., Chung, W., & Lin, Z. (2018). A survey of mobile crowdsensing techniques: A critical component for the internet of things. ACM Transactions on Cyber-Physical Systems, 2(3), 1-26. [5] Zhao, H., Xiao, M., Wu, J., Xu, Y., Huang, H., & Zhang, S. (2020). Differentially private unknown worker recruitment for mobile crowdsensing using multi-armed bandits. IEEE Transactions on Mobile Computing, 20(9), 2779-2794. [6] Sawwan, A., & Wu, J. (2023, May). A New Framework: Short-Term and Long-Term Returns in Stochastic Multi-Armed Bandit. In 42th IEEE International Conference on Computer Communications (IEEE INFOCOM 2023). [7] Wu, C., Zhu, Y., Zhang, R., Chen, Y., Wang, F., & Cui, S. (2023). FedAB: Truthful Federated Learning with Auction-based Combinatorial Multi-Armed Bandit. IEEE Internet of Things Journal. [8] Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhao, H., Xiao, M., Wu, J., Xu, Y., Huang, H., & Zhang, S. (2020). Differentially private unknown worker recruitment for mobile crowdsensing using multi-armed bandits. IEEE Transactions on Mobile Computing, 20(9), 2779-2794. [6] Sawwan, A., & Wu, J. (2023, May). A New Framework: Short-Term and Long-Term Returns in Stochastic Multi-Armed Bandit. In 42th IEEE International Conference on Computer Communications (IEEE INFOCOM 2023). [7] Wu, C., Zhu, Y., Zhang, R., Chen, Y., Wang, F., & Cui, S. (2023). FedAB: Truthful Federated Learning with Auction-based Combinatorial Multi-Armed Bandit. IEEE Internet of Things Journal. [8] Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Sawwan, A., & Wu, J. (2023, May). A New Framework: Short-Term and Long-Term Returns in Stochastic Multi-Armed Bandit. In 42th IEEE International Conference on Computer Communications (IEEE INFOCOM 2023). [7] Wu, C., Zhu, Y., Zhang, R., Chen, Y., Wang, F., & Cui, S. (2023). FedAB: Truthful Federated Learning with Auction-based Combinatorial Multi-Armed Bandit. IEEE Internet of Things Journal. [8] Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wu, C., Zhu, Y., Zhang, R., Chen, Y., Wang, F., & Cui, S. (2023). FedAB: Truthful Federated Learning with Auction-based Combinatorial Multi-Armed Bandit. IEEE Internet of Things Journal. [8] Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Dasari, V. S., Kantarci, B., Pouryazdan, M., Foschini, L., & Girolami, M. (2020). Game theory in mobile crowdsensing: A comprehensive survey. Sensors, 20(7), 2055. [4] Liu, J., Shen, H., Narman, H. S., Chung, W., & Lin, Z. (2018). A survey of mobile crowdsensing techniques: A critical component for the internet of things. ACM Transactions on Cyber-Physical Systems, 2(3), 1-26. [5] Zhao, H., Xiao, M., Wu, J., Xu, Y., Huang, H., & Zhang, S. (2020). Differentially private unknown worker recruitment for mobile crowdsensing using multi-armed bandits. IEEE Transactions on Mobile Computing, 20(9), 2779-2794. [6] Sawwan, A., & Wu, J. (2023, May). A New Framework: Short-Term and Long-Term Returns in Stochastic Multi-Armed Bandit. In 42th IEEE International Conference on Computer Communications (IEEE INFOCOM 2023). [7] Wu, C., Zhu, Y., Zhang, R., Chen, Y., Wang, F., & Cui, S. (2023). FedAB: Truthful Federated Learning with Auction-based Combinatorial Multi-Armed Bandit. IEEE Internet of Things Journal. [8] Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Liu, J., Shen, H., Narman, H. S., Chung, W., & Lin, Z. (2018). A survey of mobile crowdsensing techniques: A critical component for the internet of things. ACM Transactions on Cyber-Physical Systems, 2(3), 1-26. [5] Zhao, H., Xiao, M., Wu, J., Xu, Y., Huang, H., & Zhang, S. (2020). Differentially private unknown worker recruitment for mobile crowdsensing using multi-armed bandits. IEEE Transactions on Mobile Computing, 20(9), 2779-2794. [6] Sawwan, A., & Wu, J. (2023, May). A New Framework: Short-Term and Long-Term Returns in Stochastic Multi-Armed Bandit. In 42th IEEE International Conference on Computer Communications (IEEE INFOCOM 2023). [7] Wu, C., Zhu, Y., Zhang, R., Chen, Y., Wang, F., & Cui, S. (2023). FedAB: Truthful Federated Learning with Auction-based Combinatorial Multi-Armed Bandit. IEEE Internet of Things Journal. [8] Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhao, H., Xiao, M., Wu, J., Xu, Y., Huang, H., & Zhang, S. (2020). Differentially private unknown worker recruitment for mobile crowdsensing using multi-armed bandits. IEEE Transactions on Mobile Computing, 20(9), 2779-2794. [6] Sawwan, A., & Wu, J. (2023, May). A New Framework: Short-Term and Long-Term Returns in Stochastic Multi-Armed Bandit. In 42th IEEE International Conference on Computer Communications (IEEE INFOCOM 2023). [7] Wu, C., Zhu, Y., Zhang, R., Chen, Y., Wang, F., & Cui, S. (2023). FedAB: Truthful Federated Learning with Auction-based Combinatorial Multi-Armed Bandit. IEEE Internet of Things Journal. [8] Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Sawwan, A., & Wu, J. (2023, May). A New Framework: Short-Term and Long-Term Returns in Stochastic Multi-Armed Bandit. In 42th IEEE International Conference on Computer Communications (IEEE INFOCOM 2023). [7] Wu, C., Zhu, Y., Zhang, R., Chen, Y., Wang, F., & Cui, S. (2023). FedAB: Truthful Federated Learning with Auction-based Combinatorial Multi-Armed Bandit. IEEE Internet of Things Journal. [8] Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wu, C., Zhu, Y., Zhang, R., Chen, Y., Wang, F., & Cui, S. (2023). FedAB: Truthful Federated Learning with Auction-based Combinatorial Multi-Armed Bandit. IEEE Internet of Things Journal. [8] Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Liu, J., Shen, H., Narman, H. S., Chung, W., & Lin, Z. (2018). A survey of mobile crowdsensing techniques: A critical component for the internet of things. ACM Transactions on Cyber-Physical Systems, 2(3), 1-26. [5] Zhao, H., Xiao, M., Wu, J., Xu, Y., Huang, H., & Zhang, S. (2020). Differentially private unknown worker recruitment for mobile crowdsensing using multi-armed bandits. IEEE Transactions on Mobile Computing, 20(9), 2779-2794. [6] Sawwan, A., & Wu, J. (2023, May). A New Framework: Short-Term and Long-Term Returns in Stochastic Multi-Armed Bandit. In 42th IEEE International Conference on Computer Communications (IEEE INFOCOM 2023). [7] Wu, C., Zhu, Y., Zhang, R., Chen, Y., Wang, F., & Cui, S. (2023). FedAB: Truthful Federated Learning with Auction-based Combinatorial Multi-Armed Bandit. IEEE Internet of Things Journal. [8] Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhao, H., Xiao, M., Wu, J., Xu, Y., Huang, H., & Zhang, S. (2020). Differentially private unknown worker recruitment for mobile crowdsensing using multi-armed bandits. IEEE Transactions on Mobile Computing, 20(9), 2779-2794. [6] Sawwan, A., & Wu, J. (2023, May). A New Framework: Short-Term and Long-Term Returns in Stochastic Multi-Armed Bandit. In 42th IEEE International Conference on Computer Communications (IEEE INFOCOM 2023). [7] Wu, C., Zhu, Y., Zhang, R., Chen, Y., Wang, F., & Cui, S. (2023). FedAB: Truthful Federated Learning with Auction-based Combinatorial Multi-Armed Bandit. IEEE Internet of Things Journal. [8] Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Sawwan, A., & Wu, J. (2023, May). A New Framework: Short-Term and Long-Term Returns in Stochastic Multi-Armed Bandit. In 42th IEEE International Conference on Computer Communications (IEEE INFOCOM 2023). [7] Wu, C., Zhu, Y., Zhang, R., Chen, Y., Wang, F., & Cui, S. (2023). FedAB: Truthful Federated Learning with Auction-based Combinatorial Multi-Armed Bandit. IEEE Internet of Things Journal. [8] Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wu, C., Zhu, Y., Zhang, R., Chen, Y., Wang, F., & Cui, S. (2023). FedAB: Truthful Federated Learning with Auction-based Combinatorial Multi-Armed Bandit. IEEE Internet of Things Journal. [8] Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Zhao, H., Xiao, M., Wu, J., Xu, Y., Huang, H., & Zhang, S. (2020). Differentially private unknown worker recruitment for mobile crowdsensing using multi-armed bandits. IEEE Transactions on Mobile Computing, 20(9), 2779-2794. [6] Sawwan, A., & Wu, J. (2023, May). A New Framework: Short-Term and Long-Term Returns in Stochastic Multi-Armed Bandit. In 42th IEEE International Conference on Computer Communications (IEEE INFOCOM 2023). [7] Wu, C., Zhu, Y., Zhang, R., Chen, Y., Wang, F., & Cui, S. (2023). FedAB: Truthful Federated Learning with Auction-based Combinatorial Multi-Armed Bandit. IEEE Internet of Things Journal. [8] Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Sawwan, A., & Wu, J. (2023, May). A New Framework: Short-Term and Long-Term Returns in Stochastic Multi-Armed Bandit. In 42th IEEE International Conference on Computer Communications (IEEE INFOCOM 2023). [7] Wu, C., Zhu, Y., Zhang, R., Chen, Y., Wang, F., & Cui, S. (2023). FedAB: Truthful Federated Learning with Auction-based Combinatorial Multi-Armed Bandit. IEEE Internet of Things Journal. [8] Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wu, C., Zhu, Y., Zhang, R., Chen, Y., Wang, F., & Cui, S. (2023). FedAB: Truthful Federated Learning with Auction-based Combinatorial Multi-Armed Bandit. IEEE Internet of Things Journal. [8] Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Sawwan, A., & Wu, J. (2023, May). A New Framework: Short-Term and Long-Term Returns in Stochastic Multi-Armed Bandit. In 42th IEEE International Conference on Computer Communications (IEEE INFOCOM 2023). [7] Wu, C., Zhu, Y., Zhang, R., Chen, Y., Wang, F., & Cui, S. (2023). FedAB: Truthful Federated Learning with Auction-based Combinatorial Multi-Armed Bandit. IEEE Internet of Things Journal. [8] Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wu, C., Zhu, Y., Zhang, R., Chen, Y., Wang, F., & Cui, S. (2023). FedAB: Truthful Federated Learning with Auction-based Combinatorial Multi-Armed Bandit. IEEE Internet of Things Journal. [8] Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Wu, C., Zhu, Y., Zhang, R., Chen, Y., Wang, F., & Cui, S. (2023). FedAB: Truthful Federated Learning with Auction-based Combinatorial Multi-Armed Bandit. IEEE Internet of Things Journal. [8] Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Jin, W., Xiao, M., Li, M., & Guo, L. (2019, April). If you do not care about it, sell it: Trading location privacy in mobile crowd sensing. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1045-1053). IEEE. [9] Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Ma, H., Zhao, D., & Yuan, P. (2014). Opportunities in mobile crowd sensing. IEEE Communications Magazine, 52(8), 29-35. [10] Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Toward optimal allocation of location dependent tasks in crowdsensing [11] Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Pu, L., Chen, X., Xu, J., & Fu, X. (2016, April). Crowdlet: Optimal worker recruitment for self-organized mobile crowdsourcing. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE. [12] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-aware multitask-oriented dynamic participant selection with budget constraints. IEEE Transactions on Vehicular Technology, 63(9), 4618-4632. [13] Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Yang, S., Han, K., Zheng, Z., Tang, S., & Wu, F. (2018, April). Towards personalized task matching in mobile crowdsensing via fine-grained user profiling. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications (pp. 2411-2419). IEEE. [14] Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Zhang, Y., Li, P., Zhang, T., Liu, J., Huang, W., & Nie, L. (2023). Dynamic User Recruitment in Edge-aided Mobile Crowdsensing. IEEE Transactions on Vehicular Technology. [15] Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Xiao, M., Wu, J., Huang, L., Wang, Y., & Liu, C. (2015, April). Multi-task assignment for crowdsensing in mobile social networks. In 2015 IEEE Conference on Computer Communications (INFOCOM) (pp. 2227-2235). IEEE. [16] Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Jin, H., Guo, H., Su, L., Nahrstedt, K., & Wang, X. (2019, April). Dynamic task pricing in multi-requester mobile crowd sensing with markov correlated equilibrium. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications (pp. 1063-1071). IEEE. [17] ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- ul Hassan, U., & Curry, E. (2016). Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning. Expert Systems with Applications, 58, 36-56. [18] Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Wu, Y., Li, F., Ma, L., Xie, Y., Li, T., & Wang, Y. (2019). A context-aware multiarmed bandit incentive mechanism for mobile crowd sensing systems. IEEE Internet of Things Journal, 6(5), 7648-7658. [19] Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Gao, G., Huang, S., Huang, H., Xiao, M., Wu, J., Sun, Y. E., & Zhang, S. (2022). Combination of auction theory and multi-armed bandits: Model, algorithm, and application. IEEE Transactions on Mobile Computing. [20] Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Gao, G., Wu, J., Xiao, M., & Chen, G. (2020, July). Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications (pp. 179-188). IEEE. [21] Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Wang, H., Yang, Y., Wang, E., Liu, W., Xu, Y., & Wu, J. (2022). Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach. IEEE Transactions on Mobile Computing. [22] Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Zhang, C., Zhao, M., Zhu, L., Wu, T., & Liu, X. (2022). Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 17, 3569-3581. [23] Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Chen, W., Wang, Y., & Yuan, Y. (2013, February). Combinatorial multi-armed bandit: General framework and applications. In International conference on machine learning (pp. 151-159). PMLR. [24] Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Gai, Y., Krishnamachari, B., & Jain, R. (2012). Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5), 1466-1478. [25] Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Lawler, E. L. (1977, October). Fast approximation algorithms for knapsack problems. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 206-213). IEEE. [26] Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Yang, S., Wu, F., Tang, S., Luo, T., Gao, X., Kong, L., & Chen, G. (2016, June). Selecting most informative contributors with unknown costs for budgeted crowdsensing. In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS) (pp. 1-6). IEEE. [27] Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Vazirani, V. V. (2001). Approximation algorithms (Vol. 1). Berlin: springer. [28] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47, 235-256. [29] Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Kim, J. W., Edemacu, K., & Jang, B. (2022). Privacy-preserving mechanisms for location privacy in mobile crowdsensing: A survey. Journal of Network and Computer Applications, 200, 103315. [30] Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Karaliopoulos, M., Koutsopoulos, I., & Titsias, M. (2016, July). First learn then earn: Optimizing mobile crowdsensing campaigns through data-driven user profiling. In Proceedings of the 17th ACM international symposium on mobile ad hoc networking and computing (pp. 271-280). [31] Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Lin, Y., Cai, Z., Wang, X., Hao, F., Wang, L., & Sai, A. M. V. V. (2021). Multi-round incentive mechanism for cold start-enabled mobile crowdsensing. IEEE Transactions on Vehicular Technology, 70(1), 993-1007. [32] Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Xiao, M., An, B., Wang, J., Gao, G., Zhang, S., & Wu, J. (2021). Cmab-based reverse auction for unknown worker recruitment in mobile crowdsensing. IEEE Transactions on Mobile Computing, 21(10), 3502-3518. [33] née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- née Müller, S. K., Tekin, C., van der Schaar, M., & Klein, A. (2018). Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing. IEEE/ACM Transactions on Networking, 26(3), 1334-1347. [34] Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Han, K., Zhang, C., & Luo, J. (2015). Taming the uncertainty: Budget limited robust crowdsensing through online learning. Ieee/acm transactions on networking, 24(3), 1462-1475. [35] Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Gao, G., Wu, J., Yan, Z., Xiao, M., & Chen, G. (2019, December). Unknown worker recruitment with budget and covering constraints for mobile crowdsensing. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 539-547). IEEE. [36] Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Song, Y., & Jin, H. (2021, May). Minimizing entropy for crowdsourcing with combinatorial multi-armed bandit. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). IEEE. [37] Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Zhou, D., & Tomlin, C. (2018, April). Budget-constrained multi-armed bandits with multiple plays. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). [38] Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014. Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A., CRAWDAD dataset roma/taxi (v. 2014‑07‑17), downloaded from https://crawdad.org/roma/taxi/20140717, https://doi.org/10.15783/C7QC7M, Jul 2014.
- Abdalaziz Sawwan (1 paper)
- Jie Wu (231 papers)