Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Crowdsensing Game with Demand Uncertainties: A Deep Reinforcement Learning Approach (1901.00733v1)

Published 8 Dec 2018 in cs.CY

Abstract: Currently, explosive increase of smartphones with powerful built-in sensors such as GPS, accelerometers, gyroscopes and cameras has made the design of crowdsensing applications possible, which create a new interface between human beings and life environment. Until now, various mobile crowdsensing applications have been designed, where the crowdsourcers can employ mobile users (MUs) to complete the required sensing tasks. In this paper, emerging learning-based techniques are leveraged to address crowdsensing game with demand uncertainties and private information protection of MUs. Firstly, a novel economic model for mobile crowdsensing is designed, which takes MUs' resources constraints and demand uncertainties into consideration. Secondly, an incentive mechanism based on Stackelberg game is provided, where the sensing-platform (SP) is the leader and the MUs are the followers. Then, the existence and uniqueness of the Stackelberg Equilibrium (SE) is proven and the procedure for computing the SE is given. Furthermore, a dynamic incentive mechanism (DIM) based on deep reinforcement learning (DRL) approach is investigated without knowing the private information of the MUs. It enables the SP to learn the optimal pricing strategy directly from game experience without any prior knowledge about MUs' information. Finally, numerical simulations are implemented to evaluate the performance and theoretical properties of the proposed mechanism and approach.

Citations (5)

Summary

We haven't generated a summary for this paper yet.