Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Relativistic perturbation theory for black-hole boson clouds (2309.10021v2)

Published 18 Sep 2023 in gr-qc and hep-th

Abstract: We develop a relativistic perturbation theory for scalar clouds around rotating black holes. We first introduce a relativistic product and corresponding orthogonality relation between modes, extending a recent result for gravitational perturbations. We then derive the analog of time-dependent perturbation theory in quantum mechanics, and apply it to calculate self-gravitational frequency shifts. This approach supersedes the non-relativistic "gravitational atom" approximation, brings close agreement with numerical relativity, and has practical applications for gravitational-wave astronomy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. E. Berti, V. Cardoso, and A. O. Starinets, Quasinormal modes of black holes and black branes, Class. Quantum Grav. 26, 163001 (2009), arXiv:0905.2975 [gr-qc] .
  2. K. D. Kokkotas and B. G. Schmidt, Quasi-normal modes of stars and black holes, Living Reviews in Relativity 2, 10.12942/lrr-1999-2 (1999).
  3. R. Brito, V. Cardoso, and P. Pani, Superradiance: New Frontiers in Black Hole Physics, Vol. 906 (Springer, 2015) arXiv:1501.06570 [gr-qc] .
  4. M. Baryakhtar, R. Lasenby, and M. Teo, Black Hole Superradiance Signatures of Ultralight Vectors, Phys. Rev. D 96, 035019 (2017), arXiv:1704.05081 [hep-ph] .
  5. V. Cardoso, F. Duque, and T. Ikeda, Tidal effects and disruption in superradiant clouds: a numerical investigation, Phys. Rev. D 101, 064054 (2020), arXiv:2001.01729 [gr-qc] .
  6. R. Brito, S. Grillo, and P. Pani, Black Hole Superradiant Instability from Ultralight Spin-2 Fields, Phys. Rev. Lett. 124, 211101 (2020), arXiv:2002.04055 [gr-qc] .
  7. D. Baumann, H. S. Chia, and R. A. Porto, Probing Ultralight Bosons with Binary Black Holes, Phys. Rev. D 99, 044001 (2019), arXiv:1804.03208 [gr-qc] .
  8. G. M. Tomaselli, T. F. M. Spieksma, and G. Bertone, Dynamical Friction in Gravitational Atoms,   (2023), arXiv:2305.15460 [gr-qc] .
  9. N. Siemonsen and W. E. East, Gravitational wave signatures of ultralight vector bosons from black hole superradiance, Phys. Rev. D 101, 024019 (2020), arXiv:1910.09476 [gr-qc] .
  10. N. Siemonsen, T. May, and W. E. East, Modeling the black hole superradiance gravitational waveform, Phys. Rev. D 107, 104003 (2023), arXiv:2211.03845 [gr-qc] .
  11. M. H.-Y. Cheung et al., Nonlinear Effects in Black Hole Ringdown, Phys. Rev. Lett. 130, 081401 (2023), arXiv:2208.07374 [gr-qc] .
  12. K. Mitman et al., Nonlinearities in Black Hole Ringdowns, Phys. Rev. Lett. 130, 081402 (2023), arXiv:2208.07380 [gr-qc] .
  13. R. Brito and S. Shah, Extreme mass-ratio inspirals into black holes surrounded by scalar clouds,   (2023), arXiv:2307.16093 [gr-qc] .
  14. S. L. Detweiler, Klein-Gordon equation and rotating black holes, Phys. Rev. D 22, 2323 (1980).
  15. J. G. Rosa, The Extremal black hole bomb, JHEP 06, 015, arXiv:0912.1780 [hep-th] .
  16. X. Tong, Y. Wang, and H.-Y. Zhu, Termination of superradiance from a binary companion, Phys. Rev. D 106, 043002 (2022), arXiv:2205.10527 [gr-qc] .
  17. S. A. Teukolsky, Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations, Astrophys. J. 185, 635 (1973).
  18. E. W. Leaver, An Analytic representation for the quasi normal modes of Kerr black holes, Proc. Roy. Soc. Lond. A 402, 285 (1985).
  19. R. A. Konoplya and A. Zhidenko, Stability and quasinormal modes of the massive scalar field around Kerr black holes, Phys. Rev. D 73, 124040 (2006), arXiv:gr-qc/0605013 .
  20. E. W. Leaver, Spectral decomposition of the perturbation response of the Schwarzschild geometry, Phys. Rev. D 34, 384 (1986).
  21. H.-P. Nollert and R. H. Price, Quantifying excitations of quasinormal mode systems, J. Math. Phys. 40, 980 (1999), arXiv:gr-qc/9810074 .
  22. E. Berti and V. Cardoso, Quasinormal ringing of Kerr black holes. I. The Excitation factors, Phys. Rev. D 74, 104020 (2006), arXiv:gr-qc/0605118 .
  23. R. M. Wald, General Relativity (Chicago Univ. Pr., Chicago, USA, 1984).
  24. A. Hussain and A. Zimmerman, Approach to computing spectral shifts for black holes beyond Kerr, Phys. Rev. D 106, 104018 (2022), arXiv:2206.10653 [gr-qc] .
  25. Black Hole Perturbation Toolkit, (bhptoolkit.org).
  26. H. Yoshino and H. Kodama, Bosenova collapse of axion cloud around a rotating black hole, Prog. Theor. Phys. 128, 153 (2012), arXiv:1203.5070 [gr-qc] .
  27. O. Lunin, Maxwell’s equations in the Myers-Perry geometry, JHEP 12, 138, arXiv:1708.06766 [hep-th] .
  28. S. R. Green, S. Hollands, and P. Zimmerman, Teukolsky formalism for nonlinear Kerr perturbations, Class. Quant. Grav. 37, 075001 (2020), arXiv:1908.09095 [gr-qc] .
  29. A. Spiers, A. Pound, and J. Moxon, Second-order Teukolsky formalism in Kerr spacetime: Formulation and nonlinear source, Phys. Rev. D 108, 064002 (2023), arXiv:2305.19332 [gr-qc] .
  30. P. J. Nee, S. H. Völkel, and H. P. Pfeiffer, Role of black hole quasinormal mode overtones for ringdown analysis, Phys. Rev. D 108, 044032 (2023), arXiv:2302.06634 [gr-qc] .
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.