Relativistic perturbation theory for black-hole boson clouds (2309.10021v2)
Abstract: We develop a relativistic perturbation theory for scalar clouds around rotating black holes. We first introduce a relativistic product and corresponding orthogonality relation between modes, extending a recent result for gravitational perturbations. We then derive the analog of time-dependent perturbation theory in quantum mechanics, and apply it to calculate self-gravitational frequency shifts. This approach supersedes the non-relativistic "gravitational atom" approximation, brings close agreement with numerical relativity, and has practical applications for gravitational-wave astronomy.
- E. Berti, V. Cardoso, and A. O. Starinets, Quasinormal modes of black holes and black branes, Class. Quantum Grav. 26, 163001 (2009), arXiv:0905.2975 [gr-qc] .
- K. D. Kokkotas and B. G. Schmidt, Quasi-normal modes of stars and black holes, Living Reviews in Relativity 2, 10.12942/lrr-1999-2 (1999).
- R. Brito, V. Cardoso, and P. Pani, Superradiance: New Frontiers in Black Hole Physics, Vol. 906 (Springer, 2015) arXiv:1501.06570 [gr-qc] .
- M. Baryakhtar, R. Lasenby, and M. Teo, Black Hole Superradiance Signatures of Ultralight Vectors, Phys. Rev. D 96, 035019 (2017), arXiv:1704.05081 [hep-ph] .
- V. Cardoso, F. Duque, and T. Ikeda, Tidal effects and disruption in superradiant clouds: a numerical investigation, Phys. Rev. D 101, 064054 (2020), arXiv:2001.01729 [gr-qc] .
- R. Brito, S. Grillo, and P. Pani, Black Hole Superradiant Instability from Ultralight Spin-2 Fields, Phys. Rev. Lett. 124, 211101 (2020), arXiv:2002.04055 [gr-qc] .
- D. Baumann, H. S. Chia, and R. A. Porto, Probing Ultralight Bosons with Binary Black Holes, Phys. Rev. D 99, 044001 (2019), arXiv:1804.03208 [gr-qc] .
- G. M. Tomaselli, T. F. M. Spieksma, and G. Bertone, Dynamical Friction in Gravitational Atoms,  (2023), arXiv:2305.15460 [gr-qc] .
- N. Siemonsen and W. E. East, Gravitational wave signatures of ultralight vector bosons from black hole superradiance, Phys. Rev. D 101, 024019 (2020), arXiv:1910.09476 [gr-qc] .
- N. Siemonsen, T. May, and W. E. East, Modeling the black hole superradiance gravitational waveform, Phys. Rev. D 107, 104003 (2023), arXiv:2211.03845 [gr-qc] .
- M. H.-Y. Cheung et al., Nonlinear Effects in Black Hole Ringdown, Phys. Rev. Lett. 130, 081401 (2023), arXiv:2208.07374 [gr-qc] .
- K. Mitman et al., Nonlinearities in Black Hole Ringdowns, Phys. Rev. Lett. 130, 081402 (2023), arXiv:2208.07380 [gr-qc] .
- R. Brito and S. Shah, Extreme mass-ratio inspirals into black holes surrounded by scalar clouds,  (2023), arXiv:2307.16093 [gr-qc] .
- S. L. Detweiler, Klein-Gordon equation and rotating black holes, Phys. Rev. D 22, 2323 (1980).
- J. G. Rosa, The Extremal black hole bomb, JHEP 06, 015, arXiv:0912.1780 [hep-th] .
- X. Tong, Y. Wang, and H.-Y. Zhu, Termination of superradiance from a binary companion, Phys. Rev. D 106, 043002 (2022), arXiv:2205.10527 [gr-qc] .
- S. A. Teukolsky, Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations, Astrophys. J. 185, 635 (1973).
- E. W. Leaver, An Analytic representation for the quasi normal modes of Kerr black holes, Proc. Roy. Soc. Lond. A 402, 285 (1985).
- R. A. Konoplya and A. Zhidenko, Stability and quasinormal modes of the massive scalar field around Kerr black holes, Phys. Rev. D 73, 124040 (2006), arXiv:gr-qc/0605013 .
- E. W. Leaver, Spectral decomposition of the perturbation response of the Schwarzschild geometry, Phys. Rev. D 34, 384 (1986).
- H.-P. Nollert and R. H. Price, Quantifying excitations of quasinormal mode systems, J. Math. Phys. 40, 980 (1999), arXiv:gr-qc/9810074 .
- E. Berti and V. Cardoso, Quasinormal ringing of Kerr black holes. I. The Excitation factors, Phys. Rev. D 74, 104020 (2006), arXiv:gr-qc/0605118 .
- R. M. Wald, General Relativity (Chicago Univ. Pr., Chicago, USA, 1984).
- A. Hussain and A. Zimmerman, Approach to computing spectral shifts for black holes beyond Kerr, Phys. Rev. D 106, 104018 (2022), arXiv:2206.10653 [gr-qc] .
- Black Hole Perturbation Toolkit, (bhptoolkit.org).
- H. Yoshino and H. Kodama, Bosenova collapse of axion cloud around a rotating black hole, Prog. Theor. Phys. 128, 153 (2012), arXiv:1203.5070 [gr-qc] .
- O. Lunin, Maxwell’s equations in the Myers-Perry geometry, JHEP 12, 138, arXiv:1708.06766 [hep-th] .
- S. R. Green, S. Hollands, and P. Zimmerman, Teukolsky formalism for nonlinear Kerr perturbations, Class. Quant. Grav. 37, 075001 (2020), arXiv:1908.09095 [gr-qc] .
- A. Spiers, A. Pound, and J. Moxon, Second-order Teukolsky formalism in Kerr spacetime: Formulation and nonlinear source, Phys. Rev. D 108, 064002 (2023), arXiv:2305.19332 [gr-qc] .
- P. J. Nee, S. H. Völkel, and H. P. Pfeiffer, Role of black hole quasinormal mode overtones for ringdown analysis, Phys. Rev. D 108, 044032 (2023), arXiv:2302.06634 [gr-qc] .
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.