Coloring and density theorems for configurations of a given volume
Abstract: This is a treatise on finite point configurations spanning a fixed volume to be found in a single color-class of an arbitrary finite (measurable) coloring of the Euclidean space $\mathbb{R}n$, or in a single large measurable subset $A\subseteq\mathbb{R}n$. More specifically, we study vertex-sets of simplices, rectangular boxes, and parallelotopes, attempting to make progress on several open problems posed in the 1970s and the 1980s. As one of the highlights, we give the negative answer to a question of Erd\H{o}s and Graham, by coloring the Euclidean plane $\mathbb{R}2$ in $25$ colors without creating monochromatic rectangles of unit area. More generally, we construct a finite coloring of the Euclidean space $\mathbb{R}n$ such that no color-class contains the $2m$ vertices of any (possibly rotated) $m$-dimensional rectangular box of volume $1$. A positive result is still possible if rectangular boxes of merely sufficiently large volumes are sought in a single color-class of a finite measurable coloring of $\mathbb{R}n$, and we establish it under an additional assumption $n\geq m+1$. Also, motivated by a question of Graham on reasonable bounds in his result on monochromatic axes-aligned right-angled $m$-dimensional simplices, we establish its measurable coloring and density variants with polylogarithmic bounds, again in dimensions $n\geq m+1$. Next, we generalize a result of Erd\H{o}s and Mauldin, by constructing an infinite measure set $A\subseteq\mathbb{R}n$ such that every $n$-parallelotope with vertices in $A$ has volume strictly smaller than $1$. Finally, some results complementing the literature on isometric embeddings of hypercube graphs and on the hyperbolic analogue of the Hadwiger--Nelson problem also follow as byproducts of our approaches.
- On monochromatic configurations for finite colorings. Discrete Math., 333:106–109, 2014. doi:10.1016/j.disc.2014.06.015.
- Monochromatic configurations for finite colourings of the plane. Note Mat., 22(1):59–63, 2003/04.
- Remarks on monochromatic configurations for finite colorings of the plane. Note Mat., 32(2):83–88, 2012. doi:10.1109/mcs.2012.2185888.
- Spectral bounds for the independence ratio and the chromatic number of an operator. Israel J. Math., 202(1):227–254, 2014. doi:10.1007/s11856-014-1070-7.
- On a generalization of the Hadwiger-Nelson problem. Israel J. Math., 217(1):313–335, 2017. doi:10.1007/s11856-017-1448-4.
- Thomas Bloom. Erdős problems. https://www.erdosproblems.com/. Accessed: April 15, 2024.
- Jean Bourgain. A Szemerédi type theorem for sets of positive density in ℝksuperscriptℝ𝑘\mathbb{R}^{k}blackboard_R start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT. Israel J. Math., 54(3):307–316, 1986. doi:10.1007/BF02764959.
- Boris Bukh. Measurable sets with excluded distances. Geom. Funct. Anal., 18(3):668–697, 2008. doi:10.1007/s00039-008-0673-8.
- Kamil Bulinski. Spherical recurrence and locally isometric embeddings of trees into positive density subsets of ℤdsuperscriptℤ𝑑\mathbb{Z}^{d}blackboard_Z start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. Math. Proc. Cambridge Philos. Soc., 165(2):267–278, 2018. doi:10.1017/S0305004117000470.
- A recursive Lovász theta number for simplex-avoiding sets. Proc. Amer. Math. Soc., 150(8):3307–3322, 2022. doi:10.1090/proc/15940.
- A Roth-type theorem for dense subsets of ℝdsuperscriptℝ𝑑\mathbb{R}^{d}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. Bull. Lond. Math. Soc., 49(4):676–689, 2017. doi:10.1112/blms.12043.
- Unsolved problems in geometry. Problem Books in Mathematics. Springer-Verlag, New York, 1991. Unsolved Problems in Intuitive Mathematics, II. doi:10.1007/978-1-4612-0963-8.
- James Davies. Chromatic number of spacetime. Preprint (2024), arXiv:2308.16885.
- James Davies. Odd distances in colourings of the plane. Geom. Funct. Anal., 34(1):19–31, 2024. doi:10.1007/s00039-024-00659-w.
- Prime and polynomial distances in colourings of the plane. Preprint (2023), arXiv:2308.02483.
- Aubrey D. N. J. de Grey. The chromatic number of the plane is at least 5. Geombinatorics, 28(1):18–31, 2018.
- Monochromatic simplices of any volume. Discrete Math., 310(4):956–960, 2010. doi:10.1016/j.disc.2009.09.026.
- Polona Durcik. An L4superscriptL4\textup{L}^{4}L start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT estimate for a singular entangled quadrilinear form. Math. Res. Lett., 22(5):1317–1332, 2015. doi:10.4310/MRL.2015.v22.n5.a3.
- Polona Durcik. LpsuperscriptL𝑝\textup{L}^{p}L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT estimates for a singular entangled quadrilinear form. Trans. Amer. Math. Soc., 369(10):6935–6951, 2017. doi:10.1090/tran/6850.
- A Szemerédi-type theorem for subsets of the unit cube. Anal. PDE, 15(2):507–549, 2022. doi:10.2140/apde.2022.15.507.
- Local bounds for singular Brascamp-Lieb forms with cubical structure. Math. Z., 302(4):2375–2405, 2022. doi:10.1007/s00209-022-03148-8.
- Singular Brascamp-Lieb inequalities with cubical structure. Bull. Lond. Math. Soc., 52(2):283–298, 2020. doi:10.1112/blms.12310.
- Singular Brascamp-Lieb: a survey. In Geometric aspects of harmonic analysis, volume 45 of Springer INdAM Ser., pages 321–349. Springer, Cham, 2021. URL: https://doi.org/10.1007/978-3-030-72058-2_9, doi:10.1007/978-3-030-72058-2\_9.
- Paul Erdős. Set-theoretic, measure-theoretic, combinatorial, and number-theoretic problems concerning point sets in Euclidean space. Real Anal. Exchange, 4(2):113–138, 1978/79.
- Paul Erdős. Some combinatorial, geometric and set theoretic problems in measure theory. In D. Kölzow and D. Maharam-Stone, editors, Measure Theory, Oberwolfach 1983: Proceedings of the Conference held at Oberwolfach, June 26–July 2, 1983, volume 1089 of Lecture Notes in Mathematics, pages 321–327. Springer, Berlin, Heidelberg, 1984. doi:10.1007/BFb0072626.
- Old and new problems and results in combinatorial number theory, volume 28 of Monographies de L’Enseignement Mathématique. Université de Genève, L’Enseignement Mathématique, Geneva, 1980.
- Euclidean Ramsey theorems. I. J. Combinatorial Theory Ser. A, 14:341–363, 1973. doi:10.1016/0097-3165(73)90011-3.
- Euclidean Ramsey theorems. II. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vols. I, II, III, volume Vol. 10 of Colloq. Math. Soc. János Bolyai, pages 529–557. North-Holland, Amsterdam-London, 1975.
- Euclidean Ramsey theorems. III. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vols. I, II, III, volume Vol. 10 of Colloq. Math. Soc. János Bolyai, pages 559–583. North-Holland, Amsterdam-London, 1975.
- Kenneth J. Falconer. The realization of distances in measurable subsets covering ℝnsuperscriptℝ𝑛{\mathbb{R}}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. J. Combin. Theory Ser. A, 31(2):184–189, 1981. doi:10.1016/0097-3165(81)90014-5.
- Plane sets with positive density at infinity contain all large distances. Bull. London Math. Soc., 18(5):471–474, 1986. doi:10.1112/blms/18.5.471.
- Ergodic theory and configurations in sets of positive density. In Mathematics of Ramsey theory, volume 5 of Algorithms Combin., pages 184–198. Springer, Berlin, 1990. URL: https://doi.org/10.1007/978-3-642-72905-8_13, doi:10.1007/978-3-642-72905-8\_13.
- Rudiments of Ramsey theory, volume 123 of CBMS Regional Conference Series in Mathematics. Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, second edition, 2015. doi:10.1090/cbms/123.
- Ronald Lewis Graham. On partitions of 𝔼nsuperscript𝔼𝑛{\mathbb{E}}^{n}blackboard_E start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. J. Combin. Theory Ser. A, 28(1):89–97, 1980. doi:10.1016/0097-3165(80)90061-8.
- A general Ramsey product theorem. Proc. Amer. Math. Soc., 73(1):137–139, 1979. doi:10.2307/2042899.
- The primes contain arbitrarily long arithmetic progressions. Ann. of Math. (2), 167(2):481–547, 2008. doi:10.4007/annals.2008.167.481.
- A. Iosevich and K. Taylor. Finite trees inside thin subsets of ℝdsuperscriptℝ𝑑\mathbb{R}^{d}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. In Modern methods in operator theory and harmonic analysis, volume 291 of Springer Proc. Math. Stat., pages 51–56. Springer, Cham, 2019. URL: https://doi.org/10.1007/978-3-030-26748-3_3, doi:10.1007/978-3-030-26748-3\_3.
- Vjekoslav Kovač. Bellman function technique for multilinear estimates and an application to generalized paraproducts. Indiana Univ. Math. J., 60(3):813–846, 2011. doi:10.1512/iumj.2011.60.4784.
- Vjekoslav Kovač. Boundedness of the twisted paraproduct. Rev. Mat. Iberoam., 28(4):1143–1164, 2012. doi:10.4171/RMI/707.
- Vjekoslav Kovač. Density theorems for anisotropic point configurations. Canad. J. Math., 74(5):1244–1276, 2022. doi:10.4153/S0008414X21000225.
- Vjekoslav Kovač. Large copies of large configurations in large sets (extended abstract). In T. Orponen, P. Shmerkin, and H. Wang, editors, Incidence Problems in Harmonic Analysis, Geometric Measure Theory, and Ergodic Theory. Workshop report 25/2023 of the conference held at Oberwolfach, June 4–June 9, 2023, volume 20 of Oberwolfach Rep. EMS Press, EMS-Publishing House GmbH, 2023. doi:10.4171/OWR/2023/25.
- Large dilates of hypercube graphs in the plane. Anal. Math., 2024. Accepted for publication.
- Product of simplices and sets of positive upper density in ℝdsuperscriptℝ𝑑\mathbb{R}^{d}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. Math. Proc. Cambridge Philos. Soc., 165(1):25–51, 2018. doi:10.1017/S0305004117000184.
- Distance graphs and sets of positive upper density in ℝdsuperscriptℝ𝑑\mathbb{R}^{d}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. Anal. PDE, 13(3):685–700, 2020. doi:10.2140/apde.2020.13.685.
- Distances and trees in dense subsets of ℤdsuperscriptℤ𝑑\mathbb{Z}^{d}blackboard_Z start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. Israel J. Math., 240(2):769–790, 2020. doi:10.1007/s11856-020-2079-8.
- Weak hypergraph regularity and applications to geometric Ramsey theory. Trans. Amer. Math. Soc. Ser. B, 9:160–207, 2022. doi:10.1090/btran/61.
- R. Daniel Mauldin. Some problems in set theory, analysis and geometry. In Paul Erdős and his mathematics, I (Budapest, 1999), volume 11 of Bolyai Soc. Math. Stud., pages 493–506. János Bolyai Math. Soc., Budapest, 2002.
- Ian D. Morris. A note on configurations in sets of positive density which occur at all large scales. Israel J. Math., 207(2):719–738, 2015. doi:10.1007/s11856-015-1187-3.
- Ilya D. Shkredov. On a problem of Gowers. Izv. Ross. Akad. Nauk Ser. Mat., 70(2):179–221, 2006. doi:10.1070/IM2006v070n02ABEH002316.
- Alexander Soifer. The New Mathematical Coloring Book. Mathematics of Coloring and the Colorful Life of Its Creators. Springer New York, NY, 2024. doi:10.1007/978-1-0716-3597-1.
- Elias M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, volume 43 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.
- Introduction to Fourier analysis on Euclidean spaces. Princeton Mathematical Series, No. 32. Princeton University Press, Princeton, N.J., 1971.
- Hugo Steinhaus. Sur les distances des points dans les ensembles de mesure positive. Fund. Math., 1:93–104, 1920. doi:10.4064/fm-1-1-93-104.
- Ernst Gabor Straus. A combinatorial theorem in group theory. Math. Comp., 29:303–309, 1975. doi:10.2307/2005482.
- Terence Tao. The ergodic and combinatorial approaches to Szemerédi’s theorem. In Additive combinatorics, volume 43 of CRM Proc. Lecture Notes, pages 145–193. Amer. Math. Soc., Providence, RI, 2007. doi:10.1090/crmp/043/08.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.