Characterizations of compactness and weighted eigenvalue problem associated with fractional Hardy-type inequalities (2309.09532v2)
Abstract: In this article, we consider the following fractional {Hardy-type} inequality: \begin{align} \label{Fractional Hardy_abst} \int_{\mathbb{R}N} |w(x)||u(x)|p \mathrm{d}x \leq C \int_{\mathbb{R}N \times \mathbb{R}N} \frac{|u(x)-u(y)|p}{|x-y|{N+sp}} \mathrm{d}x\mathrm{d}y:= |u|{s,p}p\,, \ \forall u \in \mathcal{D}{s,p}(\mathbb{R}N), \end{align} where $0<s<1<p<\frac{N}{s}$, and $\mathcal{D}{s,p}(\mathbb{R}N)$ is the completion of $C_c1(\mathbb{R}N)$ with respect to the {norm} $|\cdot|{s,p}$. We denote the space of admissible {weight function} $w$ in \eqref{Fractional Hardy_abst} by $\mathcal{H}{s,p}(\mathbb{R}N)$. Maz'ya-type characterization helps us to define a Banach function norm on $\mathcal{H}{s,p}(\mathbb{R}N)$. Using the Banach function space structure and the concentration compactness type arguments, we provide several characterizations for the compactness of the map ${W}(u)= \int_{{\mathbb{R}N}} |w| |u|p \mathrm{d}x$ on $\mathcal{D}{s,p}(\mathbb{R}N)$. In particular, we prove that ${W}$ is compact on $\mathcal{D}{s,p}(\mathbb{R}N)$ if and only if $w \in \mathcal{H}{s,p,0}(\mathbb{R}N):=\overline{C_c(\mathbb{R}N)} \ \mbox{in} \ \mathcal{H}{s,p}(\mathbb{R}N)$. Further, we study the following {weighted} eigenvalue problem: \begin{equation*} (-\Delta_{p}){s}u = \lambda w(x) |u|{p-2}u ~~\text{in}~\mathbb{R}{N}, \end{equation*} where $(-\Delta_{p}){s}$ is the fractional $p$-Laplace operator and $w = w_{1} - w_{2}~\text{with}~ w_{1},w_{2} \geq 0,$ is such that $ w_{1} \in \mathcal{H}{s,p,0}(\mathbb{R}N)$ and $w{2} \in L{1}_{loc}(\mathbb{R}N)$.