Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability of Caffarelli-Kohn-Nirenberg inequality (2106.09253v1)

Published 17 Jun 2021 in math.AP

Abstract: In this paper, we consider the Caffarelli-Kohn-Nirenberg (CKN) inequality: \begin{eqnarray*} \bigg(\int_{{\mathbb R}N}|x|{-b(p+1)}|u|{p+1}dx\bigg){\frac{2}{p+1}}\leq C_{a,b,N}\int_{{\mathbb R}N}|x|{-2a}|\nabla u|2dx \end{eqnarray*} where $N\geq3$, $a<\frac{N-2}{2}$, $a\leq b\leq a+1$ and $p=\frac{N+2(1+a-b)}{N-2(1+a-b)}$. It is well-known that up to dilations $\tau{\frac{N-2}{2}-a}u(\tau x)$ and scalar multiplications $Cu(x)$, the CKN inequality has a unique extremal function $W(x)$ which is positive and radially symmetric in the parameter region $b_{FS}(a)\leq b<a+1$ with $a\<0$ and $a\leq b<a+1$ with $a\geq0$ and $a+b\>0$, where $b_{FS}(a)$ is the Felli-Schneider curve. We prove that in the above parameter region the following stabilities hold: \begin{enumerate} \item[$(1)$] \quad stability of CKN inequality in the functional inequality setting $$dist_{D{1,2}_{a}}2(u, \mathcal{Z})\lesssim|u|2_{D{1,2}_a({\mathbb R}N)}-C_{a,b,N}{-1}|u|2_{L{p+1}(|x|{-b(p+1)},{\mathbb R}N)}$$ where $\mathcal{Z}= { c W_\tau\mid c\in\bbr\backslash{0}, \tau>0}$; \item[$(2)$]\quad stability of CKN inequality in the critical point setting (in the class of nonnegative functions) \begin{eqnarray*} dist_{D_a{1,2}}(u, \mathcal{Z}0\nu)\lesssim\left{\aligned &\Gamma(u),\quad p>2\text{ or }\nu=1,\ &\Gamma(u)|\log\Gamma(u)|{\frac12},\quad p=2\text{ and }\nu\geq2,\ &\Gamma(u){\frac{p}{2}},\quad 1<p<2\text{ and }\nu\geq2, \endaligned\right. \end{eqnarray*} where $\Gamma (u)=|div(|x|{-a}\nabla u)+|x|{-b(p+1)}|u|{p-1}u|{(D{1,2}_a){'}}$ and $$\mathcal{Z}0\nu={(W{\tau_1},W_{\tau_2},\cdots,W_{\tau_\nu})\mid \tau_i>0}.$$

Summary

We haven't generated a summary for this paper yet.