Higher order fractional weighted homogeneous spaces: characterization and finer embeddings (2406.05788v2)
Abstract: In this article, for $N \geq 2, s \in (1,2), p\in (1, \frac{N}{s}), \sigma=s-1 $ and $a \in [0, \frac{N-sp}{2})$, we establish an isometric isomorphism between the higher order fractional weighted Beppo-Levi space \begin{align*} {\mathcal D}{s,p}_a(\mathbb{R}N) := \overline{\mathcal{C}c{\infty}(\mathbb{R}N)}{[\cdot]{s,p,a}} \text{ where } [u]{s,p,a} := \left( \iint{\mathbb{R}N \times \mathbb{R}N} \frac{\left| \nabla u(x) -\nabla u(y) \right|p}{\left|x-y \right|{N+\sigma p}} \, \frac{\mathrm{d}x}{|x|a} \frac{\mathrm{d}y}{|y|a} \right){\frac{1}{p}}, \end{align*} and higher order fractional weighted homogeneous space \begin{align*} \mathring{W}{s,p}_a(\mathbb{R}N):= \left{u \in L_a{p*_s}(\mathbb{R}N): | \nabla u |{L_a{p*{\sigma}}(\mathbb{R}N)} + [u]{s,p,a} < \infty \right} \end{align*} with the weighted Lebesgue norm \begin{align*} | u |{L_a{p*_{\alpha}}(\mathbb{R}N)}:= \left( \int_{\mathbb{R}N} \frac{ |u(x)|{p_{\alpha}}}{|x|{\frac{2ap^_{\alpha}}{p}}} \, {\mathrm{d}x} \right){\frac{1}{p*_{\alpha}}}, \text{ where } p*_{\alpha}=\frac{Np}{N-\alpha p} \text{ for } \alpha= s,\sigma. \end{align*} To achieve this, we prove that $\mathcal{C}c{\infty}(\mathbb{R}N)$ is dense in $\mathring{W}{s,p}_a(\mathbb{R}N)$ with respect to $[\cdot]{s,p,a}$, and $[\cdot]_{s,p,a}$ is an equivalent norm on $\mathring{W}{s,p}_a(\mathbb{R}N)$. Further, we obtain a finer embedding of ${\mathcal D}{s,p}_a(\mathbb{R}N)$ into the Lorentz space $L{\frac{Np}{N-sp-2a}, p}(\mathbb{R}N)$, where $L{\frac{Np}{N-sp-2a}, p}(\mathbb{R}N) \subsetneq L_a{p*_s}(\mathbb{R}N)$.