2000 character limit reached
One-loop divergences of effective action in $6D,\, {\cal N}=(1,0)$ supersymmetric four-derivative gauge theory
Published 15 Sep 2023 in hep-th | (2309.08422v2)
Abstract: We consider six-dimensional higher-derivative ${\cal N}=(1,0)$ supersymmetric gauge theory coupled with the hypermultiplet. We use the background superfield method in six-dimensional ${\cal N}=(1,0)$ harmonic superspace to study the effective action in the theory. Using the dimensional regularization scheme we analyze the one-loop divergent contributions to the effective action. We demonstrate that UV behaviour is determined by the higher-derivative term for gauge multiplet sector.
- I. L. Buchbinder, E. A. Ivanov, B. S. Merzlikin and K. V. Stepanyantz, “Supergraph calculation of one-loop divergences in higher-derivative 6D6𝐷6D6 italic_D SYM theory,” JHEP 2008 (2020) 169 arXiv:2004.12657 [hep-th].
- I. L. Buchbinder, E. A. Ivanov, B. S. Merzlikin and K. V. Stepanyantz, “The renormalization structure of 6D6𝐷6D6 italic_D, 𝒩=(1,0)𝒩10{\cal N}=(1,0)caligraphic_N = ( 1 , 0 ) supersymmetric higher-derivative gauge theory,” Nucl. Phys. B 961 (2020), 115249, arXiv:2007.02843 [hep-th].
- I. L. Buchbinder, E. I. Buchbinder, S. M. Kuzenko and B. A. Ovrut, “The background field method for N=2 superYang-Mills theories in harmonic superspace”, Phys. Lett. B 417 (1998) 61, arXiv:hep-th/9704214.
- I. L. Buchbinder and S. M. Kuzenko, “Comments on the background field method in harmonic superspace: Nonholomorphic corrections in N=4 SYM,” Mod. Phys. Lett. A 13 (1998) 1623, arXiv:hep-th/9804168.
- P. S. Howe, K. S. Stelle and P. C. West, “N=1, d=6 harmonic superspace”, Class. Quant. Grav. 2 (1985) 815.
- B. M. Zupnik, “Six-dimensional supergauge theories in the harmonic superspace,” Sov. J. Nucl. Phys. 44 (1986) 512 [Yad. Fiz. 44 (1986) 794].
- A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky and E. Sokatchev, “Unconstrained N=2 matter, Yang-Mills and supergravity theories in harmonic superspace,” Class. Quant. Grav. 1 (1984) 469, Erratum: [Class. Quant. Grav. 2 (1985) 127].
- A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky and E. S. Sokatchev, “Harmonic superspace”, Cambridge, UK: Univ. Pr. (2001) 306 p.
- E. A. Ivanov, A. V. Smilga and B. M. Zupnik, “Renormalizable supersymmetric gauge theory in six dimensions,” Nucl. Phys. B 726 (2005) 131, arXiv:hep-th/0505082.
- E. S. Fradkin and A. A. Tseytlin, “Quantum properties of higher dimensional and dimensionally reduced supersymmetric theories,” Nucl. Phys. B 227 (1983) 252.
- N. Marcus and A. Sagnotti, “A test of finiteness predictions for supersymmetric theories,” Phys. Lett. 135B (1984) 85.
- N. Marcus and A. Sagnotti, “The ultraviolet behavior of N=4𝑁4N=4italic_N = 4 Yang-Mills and the power counting of extended superspace,” Nucl. Phys. B 256 (1985) 77.
- D. I. Kazakov, “Ultraviolet fixed points in gauge and SUSY field theories in extra dimensions,” JHEP 0303 (2003) 020, arXiv:hep-th/0209100.
- I. L. Buchbinder, A. S. Budekhina and B. S. Merzlikin, “On the component structure of one-loop effective actions in 6D6𝐷6D6 italic_D, 𝒩=(1,0)𝒩10{\cal N}=(1,0)caligraphic_N = ( 1 , 0 ) and 𝒩=(1,1)𝒩11{\cal N}=(1,1)caligraphic_N = ( 1 , 1 ) supersymmetric gauge theories,” Mod. Phys. Lett. A 35 (2019) no.09, 2050060, arXiv:1909.10789 [hep-th].
- P. S. Howe and K. S. Stelle, “Ultraviolet divergences in higher dimensional supersymmetric Yang-Mills theories,” Phys. Lett. 137B (1984) 175.
- P. S. Howe and K. S. Stelle, “Supersymmetry counterterms revisited,” Phys. Lett. B 554 (2003) 190, arXiv:hep-th/0211279.
- G. Bossard, P. S. Howe and K. S. Stelle, “The ultra-violet question in maximally supersymmetric field theories,” Gen. Rel. Grav. 41 (2009) 919, arXiv:0901.4661 [hep-th].
- G. Bossard, P. S. Howe and K. S. Stelle, “A note on the UV behaviour of maximally supersymmetric Yang-Mills theories,” Phys. Lett. B 682 (2009) 137, arXiv:0908.3883 [hep-th].
- G. Bossard, E. Ivanov and A. Smilga, “Ultraviolet behavior of 6D supersymmetric Yang-Mills theories and harmonic superspace”, JHEP 1512 (2015) 085, arXiv:1509.08027 [hep-th].
- I. L. Buchbinder, E. A. Ivanov, B. S. Merzlikin and K. V. Stepanyantz, “One-loop divergences in 6D, 𝒩𝒩\mathcal{N}caligraphic_N = (1,0) SYM theory,” JHEP 1701 (2017) 128, arXiv:1612.03190 [hep-th].
- I. L. Buchbinder, E. A. Ivanov, B. S. Merzlikin and K. V. Stepanyantz, “Supergraph analysis of the one-loop divergences in 6D6𝐷6D6 italic_D, 𝒩=(1,0)𝒩10{\cal N}=(1,0)caligraphic_N = ( 1 , 0 ) and 𝒩=(1,1)𝒩11{\cal N}=(1,1)caligraphic_N = ( 1 , 1 ) gauge theories,” Nucl. Phys. B 921 (2017) 127, arXiv:1704.02530 [hep-th].
- L. V. Bork, D. I. Kazakov, M. V. Kompaniets, D. M. Tolkachev and D. E. Vlasenko, “Divergences in maximal supersymmetric Yang-Mills theories in diverse dimensions,” JHEP 1511 (2015) 059, arXiv:1508.05570 [hep-th].
- E. A. Ivanov and A. V. Smilga, “Conformal properties of hypermultiplet actions in six dimensions,” Phys. Lett. B 637 (2006) 374, arXiv:hep-th/0510273.
- A. V. Smilga, “Benign versus malicious ghosts in higher-derivative theories,” Nucl. Phys. B 706 (2005) 598, arXiv:hep-th/0407231.
- A. V. Smilga, “Chiral anomalies in higher-derivative supersymmetric 6D theories,” Phys. Lett. B 647 (2007) 298, arXiv:hep-th/0606139.
- L. Casarin and A. A. Tseytlin, “One-loop β𝛽\betaitalic_β-functions in 4-derivative gauge theory in 6 dimensions,” JHEP 1908 (2019) 159, arXiv:1907.02501 [hep-th].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.