Papers
Topics
Authors
Recent
Search
2000 character limit reached

One-loop divergences of effective action in $6D,\, {\cal N}=(1,0)$ supersymmetric four-derivative gauge theory

Published 15 Sep 2023 in hep-th | (2309.08422v2)

Abstract: We consider six-dimensional higher-derivative ${\cal N}=(1,0)$ supersymmetric gauge theory coupled with the hypermultiplet. We use the background superfield method in six-dimensional ${\cal N}=(1,0)$ harmonic superspace to study the effective action in the theory. Using the dimensional regularization scheme we analyze the one-loop divergent contributions to the effective action. We demonstrate that UV behaviour is determined by the higher-derivative term for gauge multiplet sector.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. I. L. Buchbinder, E. A. Ivanov, B. S. Merzlikin and K. V. Stepanyantz, “Supergraph calculation of one-loop divergences in higher-derivative 6⁢D6𝐷6D6 italic_D SYM theory,” JHEP 2008 (2020) 169 arXiv:2004.12657 [hep-th].
  2. I. L. Buchbinder, E. A. Ivanov, B. S. Merzlikin and K. V. Stepanyantz, “The renormalization structure of 6⁢D6𝐷6D6 italic_D, 𝒩=(1,0)𝒩10{\cal N}=(1,0)caligraphic_N = ( 1 , 0 ) supersymmetric higher-derivative gauge theory,” Nucl. Phys. B 961 (2020), 115249, arXiv:2007.02843 [hep-th].
  3. I. L. Buchbinder, E. I. Buchbinder, S. M. Kuzenko and B. A. Ovrut, “The background field method for N=2 superYang-Mills theories in harmonic superspace”, Phys. Lett. B 417 (1998) 61, arXiv:hep-th/9704214.
  4. I. L. Buchbinder and S. M. Kuzenko, “Comments on the background field method in harmonic superspace: Nonholomorphic corrections in N=4 SYM,” Mod. Phys. Lett. A 13 (1998) 1623, arXiv:hep-th/9804168.
  5. P. S. Howe, K. S. Stelle and P. C. West, “N=1, d=6 harmonic superspace”, Class. Quant. Grav.  2 (1985) 815.
  6. B. M. Zupnik, “Six-dimensional supergauge theories in the harmonic superspace,” Sov. J. Nucl. Phys.  44 (1986) 512 [Yad. Fiz.  44 (1986) 794].
  7. A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky and E. Sokatchev, “Unconstrained N=2 matter, Yang-Mills and supergravity theories in harmonic superspace,” Class. Quant. Grav.  1 (1984) 469, Erratum: [Class. Quant. Grav.  2 (1985) 127].
  8. A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky and E. S. Sokatchev, “Harmonic superspace”, Cambridge, UK: Univ. Pr. (2001) 306 p.
  9. E. A. Ivanov, A. V. Smilga and B. M. Zupnik, “Renormalizable supersymmetric gauge theory in six dimensions,” Nucl. Phys. B 726 (2005) 131, arXiv:hep-th/0505082.
  10. E. S. Fradkin and A. A. Tseytlin, “Quantum properties of higher dimensional and dimensionally reduced supersymmetric theories,” Nucl. Phys. B 227 (1983) 252.
  11. N. Marcus and A. Sagnotti, “A test of finiteness predictions for supersymmetric theories,” Phys. Lett.  135B (1984) 85.
  12. N. Marcus and A. Sagnotti, “The ultraviolet behavior of N=4𝑁4N=4italic_N = 4 Yang-Mills and the power counting of extended superspace,” Nucl. Phys. B 256 (1985) 77.
  13. D. I. Kazakov, “Ultraviolet fixed points in gauge and SUSY field theories in extra dimensions,” JHEP 0303 (2003) 020, arXiv:hep-th/0209100.
  14. I. L. Buchbinder, A. S. Budekhina and B. S. Merzlikin, “On the component structure of one-loop effective actions in 6⁢D6𝐷6D6 italic_D, 𝒩=(1,0)𝒩10{\cal N}=(1,0)caligraphic_N = ( 1 , 0 ) and 𝒩=(1,1)𝒩11{\cal N}=(1,1)caligraphic_N = ( 1 , 1 ) supersymmetric gauge theories,” Mod. Phys. Lett. A 35 (2019) no.09, 2050060, arXiv:1909.10789 [hep-th].
  15. P. S. Howe and K. S. Stelle, “Ultraviolet divergences in higher dimensional supersymmetric Yang-Mills theories,” Phys. Lett.  137B (1984) 175.
  16. P. S. Howe and K. S. Stelle, “Supersymmetry counterterms revisited,” Phys. Lett. B 554 (2003) 190, arXiv:hep-th/0211279.
  17. G. Bossard, P. S. Howe and K. S. Stelle, “The ultra-violet question in maximally supersymmetric field theories,” Gen. Rel. Grav.  41 (2009) 919, arXiv:0901.4661 [hep-th].
  18. G. Bossard, P. S. Howe and K. S. Stelle, “A note on the UV behaviour of maximally supersymmetric Yang-Mills theories,” Phys. Lett. B 682 (2009) 137, arXiv:0908.3883 [hep-th].
  19. G. Bossard, E. Ivanov and A. Smilga, “Ultraviolet behavior of 6D supersymmetric Yang-Mills theories and harmonic superspace”, JHEP 1512 (2015) 085, arXiv:1509.08027 [hep-th].
  20. I. L. Buchbinder, E. A. Ivanov, B. S. Merzlikin and K. V. Stepanyantz, “One-loop divergences in 6D, 𝒩𝒩\mathcal{N}caligraphic_N = (1,0) SYM theory,” JHEP 1701 (2017) 128, arXiv:1612.03190 [hep-th].
  21. I. L. Buchbinder, E. A. Ivanov, B. S. Merzlikin and K. V. Stepanyantz, “Supergraph analysis of the one-loop divergences in 6⁢D6𝐷6D6 italic_D, 𝒩=(1,0)𝒩10{\cal N}=(1,0)caligraphic_N = ( 1 , 0 ) and 𝒩=(1,1)𝒩11{\cal N}=(1,1)caligraphic_N = ( 1 , 1 ) gauge theories,” Nucl. Phys. B 921 (2017) 127, arXiv:1704.02530 [hep-th].
  22. L. V. Bork, D. I. Kazakov, M. V. Kompaniets, D. M. Tolkachev and D. E. Vlasenko, “Divergences in maximal supersymmetric Yang-Mills theories in diverse dimensions,” JHEP 1511 (2015) 059, arXiv:1508.05570 [hep-th].
  23. E. A. Ivanov and A. V. Smilga, “Conformal properties of hypermultiplet actions in six dimensions,” Phys. Lett. B 637 (2006) 374, arXiv:hep-th/0510273.
  24. A. V. Smilga, “Benign versus malicious ghosts in higher-derivative theories,” Nucl. Phys. B 706 (2005) 598, arXiv:hep-th/0407231.
  25. A. V. Smilga, “Chiral anomalies in higher-derivative supersymmetric 6D theories,” Phys. Lett. B 647 (2007) 298, arXiv:hep-th/0606139.
  26. L. Casarin and A. A. Tseytlin, “One-loop β𝛽\betaitalic_β-functions in 4-derivative gauge theory in 6 dimensions,” JHEP 1908 (2019) 159, arXiv:1907.02501 [hep-th].

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.