Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Edge Based Oriented Object Detection (2309.08265v1)

Published 15 Sep 2023 in cs.CV

Abstract: In the field of remote sensing, we often utilize oriented bounding boxes (OBB) to bound the objects. This approach significantly reduces the overlap among dense detection boxes and minimizes the inclusion of background content within the bounding boxes. To enhance the detection accuracy of oriented objects, we propose a unique loss function based on edge gradients, inspired by the similarity measurement function used in template matching task. During this process, we address the issues of non-differentiability of the function and the semantic alignment between gradient vectors in ground truth (GT) boxes and predicted boxes (PB). Experimental results show that our proposed loss function achieves $0.6\%$ mAP improvement compared to the commonly used Smooth L1 loss in the baseline algorithm. Additionally, we design an edge-based self-attention module to encourage the detection network to focus more on the object edges. Leveraging these two innovations, we achieve a mAP increase of 1.3% on the DOTA dataset.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.