Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Entropy current and entropy production in relativistic spin hydrodynamics (2309.05789v2)

Published 11 Sep 2023 in nucl-th, cond-mat.stat-mech, and hep-th

Abstract: We use a first-principle quantum-statistical method to derive the expression of the entropy production rate in relativistic spin hydrodynamics. We show that the entropy current is not uniquely defined and can be changed by means of entropy-gauge transformations, much the same way as the stress-energy tensor and the spin tensor can be changed with pseudo-gauge transformations. We show that the local thermodynamic relations, which are admittedly educated guesses in relativistic spin hydrodynamics inspired by those at global thermodynamic equilibrium, do not hold in general and they are also non-invariant under entropy-gauge transformations. Notwithstanding, we show that the entropy production rate is independent of those transformations and we provide a universally applicable expression, extending that known in literature, from which one can infer the dissipative parts of the energy momentum and spin tensors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. STAR Collaboration, T. Niida, “Global and local polarization of ΛΛ\Lambdaroman_Λ hyperons in Au+Au collisions at 200 GeV from STAR,” Nucl. Phys. A 982 (2019) 511–514, arXiv:1808.10482 [nucl-ex].
  2. F. Becattini, “Hydrodynamics of fluids with spin,” Phys. Part. Nucl. Lett. 8 (2011) 801–804.
  3. W. Florkowski, B. Friman, A. Jaiswal, and E. Speranza, “Relativistic fluid dynamics with spin,” Phys. Rev. C 97 no. 4, (2018) 041901, arXiv:1705.00587 [nucl-th].
  4. W. Florkowski, A. Kumar, and R. Ryblewski, “Relativistic hydrodynamics for spin-polarized fluids,” Prog. Part. Nucl. Phys. 108 (2019) 103709, arXiv:1811.04409 [nucl-th].
  5. D. Montenegro, L. Tinti, and G. Torrieri, “The ideal relativistic fluid limit for a medium with polarization,” Phys. Rev. D96 no. 5, (2017) 056012, arXiv:1701.08263 [hep-th].
  6. K. Hattori, M. Hongo, X.-G. Huang, M. Matsuo, and H. Taya, “Fate of spin polarization in a relativistic fluid: An entropy-current analysis,” Phys. Lett. B 795 (2019) 100–106, arXiv:1901.06615 [hep-th].
  7. K. Fukushima and S. Pu, “Spin hydrodynamics and symmetric energy-momentum tensors – A current induced by the spin vorticity –,” Phys. Lett. B 817 (2021) 136346, arXiv:2010.01608 [hep-th].
  8. A. Daher, A. Das, W. Florkowski, and R. Ryblewski, “Canonical and phenomenological formulations of spin hydrodynamics,” Phys. Rev. C 108 no. 2, (2023) 024902, arXiv:2202.12609 [nucl-th].
  9. D. She, A. Huang, D. Hou, and J. Liao, “Relativistic viscous hydrodynamics with angular momentum,” Sci. Bull. 67 (2022) 2265–2268, arXiv:2105.04060 [nucl-th].
  10. M. Hongo, X.-G. Huang, M. Kaminski, M. Stephanov, and H.-U. Yee, “Relativistic spin hydrodynamics with torsion and linear response theory for spin relaxation,” JHEP 11 (2021) 150, arXiv:2107.14231 [hep-th].
  11. A. D. Gallegos, U. Gursoy, and A. Yarom, “Hydrodynamics of spin currents,” SciPost Phys. 11 (2021) 041, arXiv:2101.04759 [hep-th].
  12. A. D. Gallegos, U. Gursoy, and A. Yarom, “Hydrodynamics, spin currents and torsion,” arXiv:2203.05044 [hep-th].
  13. H.-H. Peng, J.-J. Zhang, X.-L. Sheng, and Q. Wang, “Ideal Spin Hydrodynamics from the Wigner Function Approach,” Chin. Phys. Lett. 38 no. 11, (2021) 116701, arXiv:2107.00448 [hep-th].
  14. Z. Cao, K. Hattori, M. Hongo, X.-G. Huang, and H. Taya, “Gyrohydrodynamics: Relativistic spinful fluid with strong vorticity,” PTEP 2022 no. 7, (2022) 071D01, arXiv:2205.08051 [hep-th].
  15. N. Weickgenannt, D. Wagner, E. Speranza, and D. H. Rischke, “Relativistic second-order dissipative spin hydrodynamics from the method of moments,” Phys. Rev. D 106 no. 9, (2022) 096014, arXiv:2203.04766 [nucl-th].
  16. N. Weickgenannt, D. Wagner, E. Speranza, and D. H. Rischke, “Relativistic dissipative spin hydrodynamics from kinetic theory with a nonlocal collision term,” Phys. Rev. D 106 no. 9, (2022) L091901, arXiv:2208.01955 [nucl-th].
  17. R. Biswas, A. Daher, A. Das, W. Florkowski, and R. Ryblewski, “Relativistic second-order spin hydrodynamics: An entropy-current analysis,” Phys. Rev. D 108 no. 1, (2023) 014024, arXiv:2304.01009 [nucl-th].
  18. X.-Q. Xie, D.-L. Wang, C. Yang, and S. Pu, “Causality and stability analysis for the minimal causal spin hydrodynamics,” arXiv:2306.13880 [hep-ph].
  19. F. W. Hehl, “On the Energy Tensor of Spinning Massive Matter in Classical Field Theory and General Relativity,” Rept. Math. Phys. 9 (1976) 55–82.
  20. F. Becattini and L. Tinti, “Thermodynamical inequivalence of quantum stress-energy and spin tensors,” Phys. Rev. D 84 (2011) 025013, arXiv:1101.5251 [hep-th].
  21. F. Becattini, W. Florkowski, and E. Speranza, “Spin tensor and its role in non-equilibrium thermodynamics,” Phys. Lett. B789 (2019) 419–425, arXiv:1807.10994 [hep-th].
  22. M. Buzzegoli, “Pseudogauge dependence of the spin polarization and of the axial vortical effect,” Phys. Rev. C 105 no. 4, (2022) 044907, arXiv:2109.12084 [nucl-th].
  23. C. van Weert, “Maximum entropy principle and relativistic hydrodynamics,” Annals of Physics, Volume 140, Issue 1,1982.
  24. D. N. Zubarev, A. N. Prozorkevich, and S. A. Smolyanskii, “Derivation of nonlinear generalized equations of quantum relativistic hydrodynamics,” Theor. Math. Phys. 40, 821–831 (1979) .
  25. F. Becattini, L. Bucciantini, E. Grossi, and L. Tinti, “Local thermodynamical equilibrium and the beta frame for a quantum relativistic fluid,” Eur. Phys. J. C 75 no. 5, (2015) 191, arXiv:1403.6265 [hep-th].
  26. F. Becattini and D. Rindori, “Extensivity, entropy current, area law and Unruh effect,” Phys. Rev. D 99 no. 12, (2019) 125011, arXiv:1903.05422 [hep-th].
  27. S. Li, M. A. Stephanov and H. U. Yee, “Nondissipative Second-Order Transport, Spin, and Pseudogauge Transformations in Hydrodynamics,” Phys. Rev. Lett. 127 (2021) no.8, 082302 doi:10.1103/PhysRevLett.127.082302 [arXiv:2011.12318 [hep-th]].
Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube