Papers
Topics
Authors
Recent
2000 character limit reached

SparseSwin: Swin Transformer with Sparse Transformer Block (2309.05224v1)

Published 11 Sep 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Advancements in computer vision research have put transformer architecture as the state of the art in computer vision tasks. One of the known drawbacks of the transformer architecture is the high number of parameters, this can lead to a more complex and inefficient algorithm. This paper aims to reduce the number of parameters and in turn, made the transformer more efficient. We present Sparse Transformer (SparTa) Block, a modified transformer block with an addition of a sparse token converter that reduces the number of tokens used. We use the SparTa Block inside the Swin T architecture (SparseSwin) to leverage Swin capability to downsample its input and reduce the number of initial tokens to be calculated. The proposed SparseSwin model outperforms other state of the art models in image classification with an accuracy of 86.96%, 97.43%, and 85.35% on the ImageNet100, CIFAR10, and CIFAR100 datasets respectively. Despite its fewer parameters, the result highlights the potential of a transformer architecture using a sparse token converter with a limited number of tokens to optimize the use of the transformer and improve its performance.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.