Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Seismic Data Strong Noise Attenuation Based on Diffusion Model and Principal Component Analysis (2309.04944v1)

Published 10 Sep 2023 in physics.geo-ph

Abstract: Seismic data noise processing is an important part of seismic exploration data processing, and the effect of noise elimination is directly related to the follow-up processing of data. In response to this problem, many authors have proposed methods based on rank reduction, sparse transformation, domain transformation, and deep learning. However, such methods are often not ideal when faced with strong noise. Therefore, we propose to use diffusion model theory for noise removal. The Bayesian equation is used to reverse the noise addition process, and the noise reduction work is divided into multiple steps to effectively deal with high-noise situations. Furthermore, we propose to evaluate the noise level of blind Gaussian seismic data using principal component analysis to determine the number of steps for noise reduction processing of seismic data. We train the model on synthetic data and validate it on field data through transfer learning. Experiments show that our proposed method can identify most of the noise with less signal leakage. This has positive significance for high-precision seismic exploration and future seismic data signal processing research.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.