Papers
Topics
Authors
Recent
2000 character limit reached

Beyond Drude transport in hydrodynamic metals

Published 7 Sep 2023 in hep-th and cond-mat.str-el | (2309.04033v3)

Abstract: In interacting theories, hydrodynamics describes the universal behavior of states close to local thermal equilibrium at late times and long distances in a gradient expansion. In the hydrodynamic regime of metals, momentum relaxes slowly with a rate $\Gamma$, which formally appears on the right-hand side of the momentum dynamical equation and causes a Drude-like peak in the frequency dependence of the thermoelectric conductivities. Here we study the structure and determine the physical implications of momentum-relaxing gradient corrections beyond Drude, \emph{i.e.} arising at subleading order in the gradient expansion. We find that they effectively renormalize the weight of the Drude pole in the thermoelectric conductivities, and contribute to the dc conductivities at the same order as previously-known gradient corrections of translation-invariant hydrodynamics. Turning on a magnetic field, extra derivative corrections appear and renormalize the cyclotron frequency and the Hall conductivity. This relaxed hydrodynamics provides a field-theoretic explanation for previous results obtained using gauge-gravity duality. In strongly-coupled metals where quasiparticles are short-lived and which may be close to a hydrodynamic regime, the extra contributions we discuss are essential to interpret experimentally measured magneto-thermoelectric conductivities. Specializing to metals close to a Fermi liquid phase, the effective mass measured either through the specific heat or the spectral weight of the Drude-like peak are found to differ, as was indeed reported in overdoped cuprate superconductors. More generally, we expect such terms to be present in any hydrodynamic theory with approximate symmetries, which arise in many physical systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. L. Landau and E. Lifshitz, Fluid Mechanics (Second Edition), second edition ed., edited by L. Landau and E. Lifshitz (Pergamon, 1987).
  2. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 1995).
  3. P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys. A45, 473001 (2012), arXiv:1205.5040 [hep-th] .
  4. A. Lucas and K. C. Fong, Hydrodynamics of electrons in graphene, J. Phys. Condens. Matter 30, 053001 (2018), arXiv:1710.08425 [cond-mat.str-el] .
  5. L. Fritz and T. Scaffidi, Hydrodynamic electronic transport,   (2023), arXiv:2303.14205 [cond-mat.str-el] .
  6. S. A. Hartnoll, A. Lucas, and S. Sachdev, Holographic quantum matter,   (2016a), arXiv:1612.07324 [hep-th] .
  7. R. A. Davison and B. Goutéraux, Dissecting holographic conductivities, JHEP 09, 090, arXiv:1505.05092 [hep-th] .
  8. M. Blake, Momentum relaxation from the fluid/gravity correspondence, JHEP 09, 010, arXiv:1505.06992 [hep-th] .
  9. M. Blake, Magnetotransport from the fluid/gravity correspondence, JHEP 10, 078, arXiv:1507.04870 [hep-th] .
  10. A. V. Andreev, S. A. Kivelson, and B. Spivak, Hydrodynamic description of transport in strongly correlated electron systems, Phys. Rev. Lett. 106, 256804 (2011), arXiv:1011.3068 [cond-mat.mes-hall] .
  11. A. Lucas, Hydrodynamic transport in strongly coupled disordered quantum field theories, New J. Phys. 17, 113007 (2015), arXiv:1506.02662 [hep-th] .
  12. S. Li, A. Levchenko, and A. V. Andreev, Hydrodynamic electron transport near charge neutrality, Phys. Rev. B 102, 075305 (2020), arXiv:2004.13726 [cond-mat.mes-hall] .
  13. N. Chagnet and K. Schalm, Hydrodynamics of a relativistic charged fluid in the presence of a periodically modulated chemical potential, SciPost Phys. 16, 028 (2024), arXiv:2303.17685 [cond-mat.str-el] .
  14. T. Ashok, Forced Fluid Dynamics from Gravity in Arbitrary Dimensions, JHEP 03, 138, arXiv:1309.6325 [hep-th] .
  15. A. Donos and J. P. Gauntlett, Holographic Q-lattices, JHEP 04, 040, arXiv:1311.3292 [hep-th] .
  16. T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP 05, 101, arXiv:1311.5157 [hep-th] .
  17. A. Donos and J. P. Gauntlett, Novel metals and insulators from holography, JHEP 06, 007, arXiv:1401.5077 [hep-th] .
  18. B. Goutéraux, Charge transport in holography with momentum dissipation, JHEP 04, 181, arXiv:1401.5436 [hep-th] .
  19. R. A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, JHEP 01, 039, arXiv:1411.1062 [hep-th] .
  20. A. Lucas and S. A. Hartnoll, Kinetic theory of transport for inhomogeneous electron fluids, Phys. Rev. B 97, 045105 (2018), arXiv:1706.04621 [cond-mat.str-el] .
  21. W. Kohn, Cyclotron resonance and de haas-van alphen oscillations of an interacting electron gas, Phys. Rev. 123, 1242 (1961).
  22. C. Kallin and B. I. Halperin, Many-body effects on the cyclotron resonance in a two-dimensional electron gas, Phys. Rev. B 31, 3635 (1985).
  23. K. Kanki and K. Yamada, Theory of cyclotron resonance in interacting electron systems on the basis of the fermi liquid theory, Journal of the Physical Society of Japan 66, 1103 (1997), https://journals.jps.jp/doi/pdf/10.1143/JPSJ.66.1103 .
  24. T. Ando, Theory of Cyclotron Resonance Lineshape in a Two-Dimensional Electron System, Journal of the Physical Society of Japan 38, 989 (1975), publisher: The Physical Society of Japan.
  25. M. Mueller and S. Sachdev, Collective cyclotron motion of the relativistic plasma in graphene, Physical Review B 78, 115419 (2008), arXiv:0801.2970 [cond-mat, physics:hep-th].
  26. I. Novak, J. Sonner, and B. Withers, Hydrodynamics without boosts, JHEP 07, 165, arXiv:1911.02578 [hep-th] .
  27. J. Armas and A. Jain, Effective field theory for hydrodynamics without boosts, SciPost Phys. 11, 054 (2021), arXiv:2010.15782 [hep-th] .
  28. S. A. Hartnoll and C. P. Herzog, Impure AdS/CFT correspondence, Phys. Rev. D 77, 106009 (2008), arXiv:0801.1693 [hep-th] .
  29. R. A. Davison, B. Goutéraux, and S. A. Hartnoll, Incoherent transport in clean quantum critical metals, JHEP 10, 112, arXiv:1507.07137 [hep-th] .
  30. A. Lucas, Sound waves and resonances in electron-hole plasma, Physical Review B 93, 245153 (2016), arXiv:1604.03955 [cond-mat].
  31. R. Mahajan, M. Barkeshli, and S. A. Hartnoll, Non-Fermi liquids and the Wiedemann-Franz law, Phys. Rev. B 88, 125107 (2013), arXiv:1304.4249 [cond-mat.str-el] .
  32. R. A. Davison, S. A. Gentle, and B. Goutéraux, Impact of irrelevant deformations on thermodynamics and transport in holographic quantum critical states, Phys. Rev. D 100, 086020 (2019a), arXiv:1812.11060 [hep-th] .
  33. N. P. Ong, Geometric interpretation of the weak-field hall conductivity in two-dimensional metals with arbitrary fermi surface, Phys. Rev. B 43, 193 (1991).
  34. M. Blake and A. Donos, Quantum Critical Transport and the Hall Angle, Phys. Rev. Lett. 114, 021601 (2015), arXiv:1406.1659 [hep-th] .
  35. P. W. Phillips, N. E. Hussey, and P. Abbamonte, Stranger than metals, Science 377, 1 (2022), arXiv:2205.12979 [cond-mat.str-el] .
  36. L. Levitov and G. Falkovich, Electron viscosity, current vortices and negative nonlocal resistance in graphene, Nature Physics 12, 672 (2016), arXiv:1508.00836 [cond-mat.mes-hall] .
  37. V. Scopelliti, K. Schalm, and A. Lucas, Hydrodynamic charge and heat transport on inhomogeneous curved spaces, Phys. Rev. B 96, 075150 (2017), arXiv:1705.04325 [cond-mat.str-el] .
  38. A. Lucas, S. Sachdev, and K. Schalm, Scale-invariant hyperscaling-violating holographic theories and the resistivity of strange metals with random-field disorder, Phys. Rev. D 89, 066018 (2014), arXiv:1401.7993 [hep-th] .
  39. S. A. Hartnoll and J. E. Santos, Disordered horizons: Holography of randomly disordered fixed points, Phys. Rev. Lett. 112, 231601 (2014), arXiv:1402.0872 [hep-th] .
  40. S. A. Hartnoll, D. M. Ramirez, and J. E. Santos, Emergent scale invariance of disordered horizons, JHEP 09, 160, arXiv:1504.03324 [hep-th] .
  41. S. A. Hartnoll, D. M. Ramirez, and J. E. Santos, Thermal conductivity at a disordered quantum critical point, JHEP 04, 022, arXiv:1508.04435 [hep-th] .
  42. K. Ganesan and A. Lucas, Breakdown of emergent Lifshitz symmetry in holographic matter with Harris-marginal disorder, JHEP 06, 023, arXiv:2004.06543 [hep-th] .
  43. K. Ganesan, A. Lucas, and L. Radzihovsky, Renormalization group in quantum critical theories with Harris-marginal disorder, Phys. Rev. D 105, 066016 (2022), arXiv:2110.11978 [hep-th] .
  44. X. Huang, S. Sachdev, and A. Lucas, Disordered quantum critical fixed points from holography,   (2023), arXiv:2306.03130 [cond-mat.str-el] .
  45. R. A. Davison, K. Schalm, and J. Zaanen, Holographic duality and the resistivity of strange metals, Phys. Rev. B 89, 245116 (2014), arXiv:1311.2451 [hep-th] .
  46. M. Baggioli and B. Goutéraux, Colloquium: Hydrodynamics and holography of charge density wave phases, Rev. Mod. Phys. 95, 011001 (2023), arXiv:2203.03298 [hep-th] .
  47. S. Grozdanov, A. Lucas, and N. Poovuttikul, Holography and hydrodynamics with weakly broken symmetries, Phys. Rev. D 99, 086012 (2019), arXiv:1810.10016 [hep-th] .
  48. A. Karch, D. T. Son, and A. O. Starinets, Holographic Quantum Liquid, Phys. Rev. Lett. 102, 051602 (2009).
  49. R. A. Davison and A. O. Starinets, Holographic zero sound at finite temperature, Phys. Rev. D 85, 026004 (2012), arXiv:1109.6343 [hep-th] .
  50. C.-F. Chen and A. Lucas, Origin of the Drude peak and of zero sound in probe brane holography, Phys. Lett. B 774, 569 (2017), arXiv:1709.01520 [hep-th] .
  51. R. A. Davison, S. A. Gentle, and B. Goutéraux, Slow relaxation and diffusion in holographic quantum critical phases, Phys. Rev. Lett. 123, 141601 (2019b), arXiv:1808.05659 [hep-th] .
  52. R. A. Davison, B. Goutéraux, and E. Mefford, Zero sound and higher-form symmetries in compressible holographic phases,   (2022), arXiv:2210.14802 [hep-th] .
  53. Y. Bardoux, M. M. Caldarelli, and C. Charmousis, Shaping black holes with free fields, JHEP 05, 054, arXiv:1202.4458 [hep-th] .
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.