Papers
Topics
Authors
Recent
2000 character limit reached

Haar basis testing (2309.03743v2)

Published 7 Sep 2023 in math.FA

Abstract: We show that for two doubling measures $\sigma$ and $\omega$ on $\mathbb{R}{n}$ and any fixed dyadic grid $\mathcal{D}$ in $\mathbb{R}{n}$, [ \mathfrak{N}{\mathbf{R}{\lambda, n}}\left( \sigma,\omega\right) \approx\mathfrak{H}{\mathbf{R}{\lambda, n}}{\mathcal{D},\operatorname*{glob}}\left( \sigma,\omega\right) +\mathfrak{H}{\mathbf{R}{\lambda, n}}{\mathcal{D},\operatorname*{glob}}\left( \omega, \sigma\right) \ , ] where $\mathfrak{N}{\mathbf{R}{\lambda, n}} (\sigma, \omega)$ denotes the $L2 (\sigma) \to L2 (\omega)$ operator norm of the vector-Riesz transform $\mathbf{R}{\lambda, n}$ of fractional order $\lambda \neq 1$, and [ \mathfrak{H}{\mathbf{R}{\lambda,n}}{\mathcal{D},\operatorname*{glob}}\left( \sigma,\omega\right) \equiv\sup{I\in\mathcal{D}}\left\Vert \mathbf{R}{\lambda,n} h_{I}{\sigma}\right\Vert {L{2}\left( \omega\right) }\ , ] is the global Haar testing characteristic for $\mathbf{R}{\lambda,n}$ on the grid $\mathcal{D}$, and $\left{ h{I}{\sigma}\right} _{I\in\mathcal{D}}$ is the weighted Haar orthonormal basis of $L{2}\left( \sigma\right) $ arising in the work of Nazarov, Treil and Volberg. We also show this theorem extends more generally to weighted Alpert wavelets which replace the weighted Haar wavelets in the proofs of some recent two-weight $T1$ theorems. Finally, we briefly pose these questions in the context of orthonormal bases in arbitrary Hilbert spaces.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.