Uniqueness of weak solutions to the primitive equations in some anisotropic spaces (2309.03443v1)
Abstract: We consider the 3D or 2D primitive equations for oceans and atmosphere in the isothermal setting. In this paper, we establish a new conditional uniqueness result for weak solutions to the primitive equations, that is, if a weak solution belongs some scaling invariant function spaces, and satisfies some additional assumptions, then the weak solution is unique. In particular, our result can be obtained as different one from $z$-weak solutions framework by adopting some anisotropic approaches with the homogeneous toroidal Besov spaces. As an application of the proof, we establish the energy equality for weak solutions in the uniqueness class given in the main theorem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.