Suppression of quasiparticle poisoning in transmon qubits by gap engineering (2309.02655v3)
Abstract: The performance of various superconducting devices operating at ultra-low temperatures is impaired by the presence of non-equilibrium quasiparticles. Inelastic quasiparticle (QP) tunneling across Josephson junctions in superconducting qubits results in decoherence and spurious excitations and, notably, can trigger correlated errors that severely impede quantum error correction. In this work, we use "gap engineering" to suppress the tunneling of low-energy quasiparticles in Al-based transmon qubits, a leading building block for superconducting quantum processors. By implementing potential barriers for QP, we strongly suppress QP tunneling across the junction and preserve charge parity for over $103$ seconds. The suppression of QP tunneling also results in a reduction in the qubit energy relaxation rates. The demonstrated approach to gap engineering can be easily implemented in all Al-based circuits with Josephson junctions.
- A. Leggett, “Macroscopic quantum systems and the quantum theory of measurement,” Progress of Theoretical Physics Suppl 69, 80–100 (1980).
- P. Joyez, P. Lafarge, A. Filipe, D. Esteve, and M. Devoret, “Observation of parity-induced suppression of josephson tunneling in the superconducting single electron transistor,” Phys. Rev. Lett 72, 2458 (1994).
- J. Aumentado, M. Keller, J. Martinis, and M. Devoret, “Nonequilibrium quasiparticles and 2e periodicity in single-cooper-pair transistors,” Phys. Rev. Lett 92, 066802 (2004).
- P. Visser, J. Baselmans, P. Diener, S. Yates, A. Endo, and T. Klapwijk, “Number fluctuations of sparse quasiparticles in a superconductor,” Phys. Rev. Lett 106, 167004 (2011).
- P. Visser, D. Goldie, P. Diener, S. Withington, J. Baselmans, and T. Klapwijk, “Evidence of a nonequilibrium distribution of quasiparticles in the microwave response of a superconducting aluminum resonator,” Phys. Rev. Lett 112, 047004 (2014).
- K. Serniak, M. Hays, G. De Lange, S. Diamond, S. Shankar, L. Burkhart, L. Frunzio, M. Houzet, and M. Devoret, “Hot nonequilibrium quasiparticles in transmon qubits,” Phys. Rev. Lett. 121, 157701 (2018).
- O. Rafferty, S. Patel, C. Liu, S. Abdullah, C. Wilen, D. Harrison, and R. McDermott, “Spurious antenna modes of the transmon qubit,” arXiv preprint arXiv:2103.06803 (2021).
- R. Gordon, C. Murray, C. Kurter, M. Sandberg, S. Hall, K. Balakrishnan, R. Shelby, B. Wacaser, A. Stabile, J. Sleight, et al., “Environmental radiation impact on lifetimes and quasiparticle tunneling rates of fixed-frequency transmon qubits,” Applied Physics Letters 120 (2022).
- X. Pan, Y. Zhou, H. Yuan, L. Nie, W. Wei, L. Zhang, J. Li, S. Liu, Z. H. Jiang, G. Catelani, et al., “Engineering superconducting qubits to reduce quasiparticles and charge noise,” Nature Communications 13, 7196 (2022).
- S. Diamond, V. Fatemi, M. Hays, H. Nho, P. D. Kurilovich, T. Connolly, V. R. Joshi, K. Serniak, L. Frunzio, L. I. Glazman, and M. H. Devoret, “Distinguishing Parity-Switching mechanisms in a superconducting qubit,” PRX Quantum 3, 040304 (2022).
- A. Vepsäläinen, “Impact of ionizing radiation on superconducting qubit coherence,” Nature 584, 551 (2020).
- M. McEwen, L. Faoro, K. Arya, A. Dunsworth, T. Huang, S. Kim, B. Burkett, A. Fowler, F. Arute, J. C. Bardin, et al., “Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits,” Nature Physics 18, 107–111 (2022).
- L. Cardani, “Reducing the impact of radioactivity on quantum circuits in a deep-underground facility,” Nat. Commun 12, 2733 (2021).
- E. T. Mannila, P. Samuelsson, S. Simbierowicz, J. Peltonen, V. Vesterinen, L. Grönberg, J. Hassel, V. F. Maisi, and J. Pekola, “A superconductor free of quasiparticles for seconds,” Nature Physics 18, 145–148 (2022a).
- M. Kastner, “The single electron transistor and artificial atoms,” Ann. Phys. (Leipzig 9, 11–12, 885 – 894 (2000).
- J. Pekola, D. Anghel, T. Suppula, J. Suoknuuti, A. Manninen, and M. Manninen, “Trapping of quasiparticles of a nonequilibrium superconductor,” Appl. Phys. Lett 76, 2782 (2000).
- P. Day, H. Leduc, B. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays,” Nature 425, 817–21 (2003).
- D. Rainis and D. Loss, “Majorana qubit decoherence by quasiparticle poisoning,” Phys. Rev. B 85, 174533 (2012).
- C. Janvier, L. Tosi, L. Bretheau, Ç. Girit, M. Stern, P. Bertet, P. Joyez, D. Vion, D. Esteve, M. Goffman, et al., “Coherent manipulation of andreev states in superconducting atomic contacts,” Science 349, 1199–1202 (2015).
- M. Hays, V. Fatemi, D. Bouman, J. Cerrillo, S. Diamond, K. Serniak, T. Connolly, P. Krogstrup, J. Nygård, A. Levy Yeyati, et al., “Coherent manipulation of an andreev spin qubit,” Science 373, 430–433 (2021).
- J. Martinis, “Saving superconducting quantum processors from qubit decay and correlated errors generated by gamma and cosmic rays,” npj Quantum Inf 7, 90 (2021).
- G. Catelani, R. J. Schoelkopf, M. H. Devoret, and L. I. Glazman, “Relaxation and frequency shifts induced by quasiparticles in superconducting qubits,” Phys. Rev. B Condens. Matter 84, 064517 (2011).
- L. Glazman and G. Catelani, “Bogoliubov quasiparticles in superconducting qubits,” SciPost Phys. Lect. Notes (2021).
- C. Wilen, S. Abdullah, N. Kurinsky, C. Stanford, L. Cardani, G. D’Imperio, C. Tomei, L. Faoro, L. Ioffe, C. Liu, A. Opremcak, B. Christensen, J. DuBois, and R. McDermott, “Correlated charge noise and relaxation errors in superconducting qubits,” Nature 594, 369 (2021).
- V. Iaia, J. Ku, A. Ballard, C. P. Larson, E. Yelton, C. H. Liu, S. Patel, R. McDermott, and B. L. T. Plourde, “Phonon downconversion to suppress correlated errors in superconducting qubits,” Nat. Commun. 13, 6425 (2022).
- L. Sun, L. DiCarlo, M. Reed, G. Catelani, L. S. Bishop, D. Schuster, B. Johnson, G. A. Yang, L. Frunzio, L. Glazman, M. Devoret, and R. Schoelkopf, “Measurements of quasiparticle tunneling dynamics in a band-gap-engineered transmon qubit,” Phys. Rev. Lett 108, 230509 (2012a).
- R.-P. Riwar, A. Hosseinkhani, L. D. Burkhart, Y. Y. Gao, R. J. Schoelkopf, L. I. Glazman, and G. Catelani, “Normal-metal quasiparticle traps for superconducting qubits,” Phys. Rev. B 94, 104516 (2016).
- C. Wang, Y. Y. Gao, I. M. Pop, U. Vool, C. Axline, T. Brecht, R. W. Heeres, L. Frunzio, M. H. Devoret, G. Catelani, et al., “Measurement and control of quasiparticle dynamics in a superconducting qubit,” Nature communications 5, 5836 (2014).
- W. Zhang, K. Kalashnikov, W.-S. Lu, P. Kamenov, T. DiNapoli, and M. Gershenson, “Microresonators fabricated from high-kinetic-inductance aluminum films,” Physical Review Applied 11, 011003 (2019).
- M. Gershenson, D. Gong, T. Sato, B. Karasik, and A. Sergeev, “Millisecond electron–phonon relaxation in ultrathin disordered metal films at millikelvin temperatures,” Appl. Phys. Lett 79, 2049–2051 (2001).
- M. Lenander, H. Wang, R. Bialczak, E. Lucero, M. Mariantoni, M. Neeley, A. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, A. Cleland, and J. M. Martinis, “Measurement of energy decay in superconducting qubits from nonequilibrium quasiparticles,” Phys. Rev. B 84, 024501 (2011).
- E. Mannila, P. Samuelsson, S. Simbierowicz, J. Peltonen, V. Vesterinen, L. Grönberg, J. Hassel, V. Maisi, and J. Pekola, “A superconductor free of quasiparticles for seconds,” Nat. Phys 18, 145–148 (2022b).
- J. Koch, T. M. Yu, J. Gambetta, A. Houck, D. Schuster, J. Majer, A. Blais, M. Devoret, S. Girvin, and R. Schoelkopf, “Charge-insensitive qubit design derived from the cooper pair box”,” Phys. Rev. A 76, 042319 (2007).
- H. Paik, D. Schuster, L. Bishop, G. Kirchmair, G. Catelani, A. Sears, B. Johnson, M. Reagor, L. Frunzio, L. Glazman, S. Girvin, M. Devoret, and R. Schoelkopf, “Observation of high coherence in josephson junction qubits measured in a three-dimensional circuit qed architecture,” Phys. Rev. Lett 107, 240501 (2011).
- P. Chubov, V. Eremenko, and Y. A. Pilipenko, “Dependence of the critical temperature and energy gap on the thickness of superconducting aluminum films,” Sov. Phys. JETP 28, 389 (1968).
- R. Meservey and D. Tedrow, “Properties of very thin aluminum films,” J. Appl. Phys 42, 51 (1972).
- T. Yamamoto, Y. Nakamura, O. Yu.A. Pashkin, and J. Tsai, “Parity effect in superconducting aluminum single electron transistors with spatial gap profile controlled by film thickness,” Appl. Phys. Lett 88, 212509 (2006).
- J. Martinis, M. Ansmann, and J. Aumentado, “Energy decay in superconducting josephson-junction qubits from nonequilibrium quasiparticle excitations,” Phys. Rev. Lett 103, 097002 (2009).
- M. Gershenzon, V. Gubankov, and Y. E. Zhuravlev, “Quantum effects in two-dimensional superconducting films at T>TcTsubscriptTc\mathrm{T>T_{c}}roman_T > roman_T start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT,” Zh. Eksp. Teor. Fiz 85, 287–299 (1983).
- M. Bell, L. Ioffe, and M. Gershenson, “Microwave spectroscopy of a cooper-pair transistor coupled to a lumped-element resonator,” Phys. Rev. B 86, 144512 1–9 (2012).
- K. Kalashnikov, W. T. Hsieh, W. Zhang, P. Wen-Sen Lu, A. Paolo, A. Blais, M. Gershenson, and M. Bell, “Bifluxon: Fluxon-parity-protected superconducting qubit,” PRX Quantum 1, 010307 (2020).
- G. Catelani and J. Pekola, “Using materials for quasiparticle engineering,” Mater. Quantum. Technol 2, 013001 (2022).
- S. Gladchenko, D. Olaya, E. Dupont-Ferrier, B. Douçot, L. Ioffe, and M. Gershenson, “Superconducting nanocircuits for topologically protected qubits,” Nat. Phys 5, 48–53 (2009).
- L. Sun, L. DiCarlo, M. Reed, G. Catelani, L. S. Bishop, D. Schuster, B. Johnson, G. A. Yang, L. Frunzio, L. Glazman, M. Devoret, and R. Schoelkopf, “Measurements of quasiparticle tunneling dynamics in a band-gap-engineered transmon qubit,” Phys. Rev. Lett 108, 230509 (2012b).
- P. Groszkowski and J. Koch, “Scqubits: a python package for superconducting qubits,” Quantum 5, 583 (2021).
- S. E. Nigg, H. Paik, B. Vlastakis, G. Kirchmair, S. Shankar, L. Frunzio, M. Devoret, R. Schoelkopf, and S. Girvin, “Black-box superconducting circuit quantization,” Physical Review Letters 108, 240502 (2012).
- Z. K. Minev, Z. Leghtas, S. O. Mundhada, L. Christakis, I. M. Pop, and M. H. Devoret, “Energy-participation quantization of josephson circuits,” npj Quantum Information 7, 131 (2021).
- X. Y. Jin, A. Kamal, A. P. Sears, T. Gudmundsen, D. Hover, J. Miloshi, R. Slattery, F. Yan, J. Yoder, T. P. Orlando, S. Gustavsson, and W. D. Oliver, “Thermal and residual Excited-State population in a 3D transmon qubit,” Phys. Rev. Lett. 114, 240501 (2015).
- K. Geerlings, Z. Leghtas, I. M. Pop, S. Shankar, L. Frunzio, R. J. Schoelkopf, M. Mirrahimi, and M. H. Devoret, “Demonstrating a driven reset protocol for a superconducting qubit,” Phys. Rev. Lett. 110, 120501 (2013).
- N. G. Ptitsina, G. M. Chulkova, K. S. Il’in, A. V. Sergeev, F. S. Pochinkov, E. M. Gershenzon, and M. E. Gershenson, “Electron-phonon interaction in disordered metal films: The resistivity and electron dephasing rate,” Phys. Rev. B Condens. Matter 56, 10089 (1997).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.