Interplay between Black Holes and Ultralight Dark Matter: Analytic Solutions
Abstract: Dark matter (DM) can consist of a scalar field so light that DM particles in the galactic halo are best described by classical waves. We investigate how these classical solutions are influenced by the presence of a non-rotating supermassive black hole at the center of the galaxy, using an analytical, albeit approximate, approach. Relying on this analytic control, we examine the consequences of imposing causal boundary conditions at the horizon, which are typically overlooked. First, we examine the scenario where the backreaction of dark matter can be neglected. The scalar field decays like a power law at large distances, thus endowing the black hole with "hair". We derive solutions for the field profile over a wide range of parameters, including cases with rotating dark matter. As a by-product, we extract the dynamical Love numbers for scalar perturbations. Next, we determine the spectrum of bound states and their behaviour. Finally, we incorporate the self-gravity of the scalar field, with a focus on the situation where dark matter forms a soliton (boson star) at the center of the galaxy. We derive an analytical expression for the soliton at every distance from the center. With a solution that remains applicable even at horizon scales, we can reliably compute the accretion rate of the black hole.
- Edward Witten “Adventures in Physics and Math, Kyoto Prize lecture” https://www.ias.edu/sites/default/files/sns/files/KyotoComemorativeLecture.pdf, 2014
- M. R. Baldeschi, R. Ruffini and G. B. Gelmini “ON MASSIVE FERMIONS AND BOSONS IN GALACTIC HALOS” In Phys. Lett. B 122, 1983, pp. 221–224 DOI: 10.1016/0370-2693(83)90688-3
- Michael S. Turner “Coherent Scalar Field Oscillations in an Expanding Universe” In Phys. Rev. D 28, 1983, pp. 1243 DOI: 10.1103/PhysRevD.28.1243
- William H. Press, Barbara S. Ryden and David N. Spergel “Single Mechanism for Generating Large Scale Structure and Providing Dark Missing Matter” In Phys. Rev. Lett. 64, 1990, pp. 1084 DOI: 10.1103/PhysRevLett.64.1084
- Sang-Jin Sin “Late time cosmological phase transition and galactic halo as Bose liquid” In Phys. Rev. D 50, 1994, pp. 3650–3654 DOI: 10.1103/PhysRevD.50.3650
- P. J. E. Peebles “Fluid dark matter” In Astrophys. J. Lett. 534, 2000, pp. L127 DOI: 10.1086/312677
- Wayne Hu, Rennan Barkana and Andrei Gruzinov “Cold and fuzzy dark matter” In Phys. Rev. Lett. 85, 2000, pp. 1158–1161 DOI: 10.1103/PhysRevLett.85.1158
- J. Lesgourgues, A. Arbey and P. Salati “A light scalar field at the origin of galaxy rotation curves” In New Astron. Rev. 46, 2002, pp. 791–799 DOI: 10.1016/S1387-6473(02)00247-6
- “Dark matter from an ultra-light pseudo-Goldsone-boson” In Phys. Lett. B 642, 2006, pp. 192–196 DOI: 10.1016/j.physletb.2006.08.069
- “Structure Formation with Scalar Field Dark Matter: The Fluid Approach” In Mon. Not. Roy. Astron. Soc. 416, 2011, pp. 87 DOI: 10.1111/j.1365-2966.2011.19012.x
- Tanja Rindler-Daller and Paul R. Shapiro “Angular Momentum and Vortex Formation in Bose-Einstein-Condensed Cold Dark Matter Haloes” In Mon. Not. Roy. Astron. Soc. 422, 2012, pp. 135–161 DOI: 10.1111/j.1365-2966.2012.20588.x
- Hsi-Yu Schive, Tzihong Chiueh and Tom Broadhurst “Cosmic Structure as the Quantum Interference of a Coherent Dark Wave” In Nature Phys. 10, 2014, pp. 496–499 DOI: 10.1038/nphys2996
- “Ultralight scalars as cosmological dark matter” In Phys. Rev. D 95.4, 2017, pp. 043541 DOI: 10.1103/PhysRevD.95.043541
- Lam Hui “Wave Dark Matter” In Ann. Rev. Astron. Astrophys. 59, 2021, pp. 247–289 DOI: 10.1146/annurev-astro-120920-010024
- “Axions In String Theory” In JHEP 06, 2006, pp. 051 DOI: 10.1088/1126-6708/2006/06/051
- “String Axiverse” In Phys. Rev. D 81, 2010, pp. 123530 DOI: 10.1103/PhysRevD.81.123530
- James Halverson, Cody Long and Pran Nath “Ultralight axion in supersymmetry and strings and cosmology at small scales” In Phys. Rev. D 96.5, 2017, pp. 056025 DOI: 10.1103/PhysRevD.96.056025
- “Axion Landscape Cosmology” In JCAP 09, 2019, pp. 062 DOI: 10.1088/1475-7516/2019/09/062
- David J. Kaup “Klein-Gordon Geon” In Phys. Rev. 172, 1968, pp. 1331–1342 DOI: 10.1103/PhysRev.172.1331
- “Systems of selfgravitating particles in general relativity and the concept of an equation of state” In Phys. Rev. 187, 1969, pp. 1767–1783 DOI: 10.1103/PhysRev.187.1767
- R. Friedberg, T. D. Lee and Y. Pang “Scalar Soliton Stars and Black Holes” In Phys. Rev. D 35, 1987, pp. 3658 DOI: 10.1103/PhysRevD.35.3658
- T. D. Lee and Y. Pang “Nontopological solitons” In Phys. Rept. 221, 1992, pp. 251–350 DOI: 10.1016/0370-1573(92)90064-7
- Steven L. Liebling and Carlos Palenzuela “Dynamical boson stars” In Living Rev. Rel. 26.1, 2023, pp. 1 DOI: 10.1007/s41114-023-00043-4
- E. Seidel and W. M. Suen “Oscillating soliton stars” In Phys. Rev. Lett. 66, 1991, pp. 1659–1662 DOI: 10.1103/PhysRevLett.66.1659
- Edmund J. Copeland, M. Gleiser and H. R. Muller “Oscillons: Resonant configurations during bubble collapse” In Phys. Rev. D 52, 1995, pp. 1920–1933 DOI: 10.1103/PhysRevD.52.1920
- L. Arturo Urena-Lopez “Oscillatons revisited” In Class. Quant. Grav. 19, 2002, pp. 2617–2632 DOI: 10.1088/0264-9381/19/10/307
- Don N. Page “Classical and quantum decay of oscillatons: Oscillating selfgravitating real scalar field solitons” In Phys. Rev. D 70, 2004, pp. 023002 DOI: 10.1103/PhysRevD.70.023002
- Luca Visinelli “Boson stars and oscillatons: A review” In Int. J. Mod. Phys. D 30.15, 2021, pp. 2130006 DOI: 10.1142/S0218271821300068
- “Understanding the Core-Halo Relation of Quantum Wave Dark Matter from 3D Simulations” In Phys. Rev. Lett. 113.26, 2014, pp. 261302 DOI: 10.1103/PhysRevLett.113.261302
- Julio F. Navarro, Carlos S. Frenk and Simon D. M. White “The Structure of cold dark matter halos” In Astrophys. J. 462, 1996, pp. 563–575 DOI: 10.1086/177173
- David J. E. Marsh and Ana-Roxana Pop “Axion dark matter, solitons and the cusp–core problem” In Mon. Not. Roy. Astron. Soc. 451.3, 2015, pp. 2479–2492 DOI: 10.1093/mnras/stv1050
- “Galactic Rotation Curves vs. Ultra-Light Dark Matter: Implications of the Soliton – Host Halo Relation” In Physical Review D 98.8, 2018, pp. 083027 DOI: 10.1103/PhysRevD.98.083027
- “Ultralight dark matter in disk galaxies” In Phys. Rev. D 99.10, 2019, pp. 103020 DOI: 10.1103/PhysRevD.99.103020
- “Looking for ultralight dark matter near supermassive black holes” In Journal of Cosmology and Astroparticle Physics 2019.7, 2019, pp. 045–045 DOI: 10.1088/1475-7516/2019/07/045
- “Axion core–halo mass and the black hole–halo mass relation: constraints on a few parsec scales” In Mon. Not. Roy. Astron. Soc. 488.4, 2019, pp. 4497–4503 DOI: 10.1093/mnras/stz1978
- Nitsan Bar, Kfir Blum and Chen Sun “Galactic rotation curves versus ultralight dark matter: A systematic comparison with SPARC data” In Phys. Rev. D 105.8, 2022, pp. 083015 DOI: 10.1103/PhysRevD.105.083015
- Luis Arturo Urena-Lopez and Andrew R. Liddle “Supermassive black holes in scalar field galaxy halos” In Phys. Rev. D 66, 2002, pp. 083005 DOI: 10.1103/PhysRevD.66.083005
- “Are black holes a serious threat to scalar field dark matter models?” In Phys. Rev. D 84, 2011, pp. 083008 DOI: 10.1103/PhysRevD.84.083008
- Philippe Brax, Jose A. R. Cembranos and Patrick Valageas “Fate of scalar dark matter solitons around supermassive galactic black holes” In Phys. Rev. D 101.2, 2020, pp. 023521 DOI: 10.1103/PhysRevD.101.023521
- Pierre-Henri Chavanis “Mass-radius relation of self-gravitating Bose-Einstein condensates with a central black hole” In Eur. Phys. J. Plus 134.7, 2019, pp. 352 DOI: 10.1140/epjp/i2019-12734-7
- Elliot Yarnell Davies and Philip Mocz “Fuzzy Dark Matter Soliton Cores around Supermassive Black Holes” In Mon. Not. Roy. Astron. Soc. 492.4, 2020, pp. 5721–5729 DOI: 10.1093/mnras/staa202
- “Parasitic black holes: the swallowing of a fuzzy dark matter soliton” arXiv, 2022 arXiv: http://arxiv.org/abs/2207.09469
- Alejandro Cruz-Osorio, F. Siddhartha Guzman and Fabio D. Lora-Clavijo “Scalar Field Dark Matter: behavior around black holes” In JCAP 06, 2011, pp. 029 DOI: 10.1088/1475-7516/2011/06/029
- “Black Hole Hair from Scalar Dark Matter” In JCAP 06, 2019, pp. 038 DOI: 10.1088/1475-7516/2019/06/038
- Katy Clough, Pedro G. Ferreira and Macarena Lagos “Growth of massive scalar hair around a Schwarzschild black hole” In Phys. Rev. D 100.6, 2019, pp. 063014 DOI: 10.1103/PhysRevD.100.063014
- Alexei Aleksandrovich Starobinskii “Amplification of waves during reflection from a rotating ”black hole”” In Sov. Phys. JETP 64.1, 1973, pp. 48–57
- V. B. Bezerra, H. S. Vieira and André A. Costa “The Klein-Gordon equation in the spacetime of a charged and rotating black hole” In Class. Quant. Grav. 31.4, 2014, pp. 045003 DOI: 10.1088/0264-9381/31/4/045003
- “Semiclassical approximations in wave mechanics” In Reports on Progress in Physics 35, 2002, pp. 315 DOI: 10.1088/0034-4885/35/1/306
- Panagiotis Charalambous, Sergei Dubovsky and Mikhail M. Ivanov “On the Vanishing of Love Numbers for Kerr Black Holes” In JHEP 05, 2021, pp. 038 DOI: 10.1007/JHEP05(2021)038
- Alex Kehagias, Davide Perrone and Antonio Riotto “Quasinormal modes and Love numbers of Kerr black holes from AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT black holes” In JCAP 01, 2023, pp. 035 DOI: 10.1088/1475-7516/2023/01/035
- “Black hole superradiance with (dark) matter accretion”, 2022 arXiv:2208.06408 [gr-qc]
- Paul Tod and Irene M Moroz “An analytical approach to the Schrödinger-Newton equations” In Nonlinearity 12.2 IOP Publishing, 1999, pp. 201–216 DOI: 10.1088/0951-7715/12/2/002
- “Irregular Liouville correlators and connection formulae for Heun functions”, 2022 arXiv:2201.04491 [hep-th]
- “The Spectra of Gravitational Atoms” In JCAP 12, 2019, pp. 006 DOI: 10.1088/1475-7516/2019/12/006
- Roscoe White “Asymptotic Analysis of Differential Equations”, 2005, pp. 1–286 DOI: 10.1142/P410
- Pierre-Henri Chavanis “Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions: I. Analytical results” In Phys. Rev. D 84, 2011, pp. 043531 DOI: 10.1103/PhysRevD.84.043531
- P. H. Chavanis and L. Delfini “Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions: II. Numerical results” In Phys. Rev. D 84, 2011, pp. 043532 DOI: 10.1103/PhysRevD.84.043532
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.