Papers
Topics
Authors
Recent
2000 character limit reached

Hyperbolic contractivity and the Hilbert metric on probability measures

Published 5 Sep 2023 in math.PR, math.ST, and stat.TH | (2309.02413v2)

Abstract: This paper gives a self-contained introduction to the Hilbert projective metric $\mathcal{H}$ and its fundamental properties, with a particular focus on the space of probability measures. We start by defining the Hilbert pseudo-metric on convex cones, focusing mainly on dual formulations of $\mathcal{H}$ . We show that linear operators on convex cones contract in the distance given by the hyperbolic tangent of $\mathcal{H}$, which in particular implies Birkhoff's classical contraction result for $\mathcal{H}$. Turning to spaces of probability measures, where $\mathcal{H}$ is a metric, we analyse the dual formulation of $\mathcal{H}$ in the general setting, and explore the geometry of the probability simplex under $\mathcal{H}$ in the special case of discrete probability measures. Throughout, we compare $\mathcal{H}$ with other distances between probability measures. In particular, we show how convergence in $\mathcal{H}$ implies convergence in total variation, $p$-Wasserstein distance, and any $f$-divergence. Furthermore, we derive a novel sharp bound for the total variation between two probability measures in terms of their Hilbert distance.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.