An Elementary Construction of Modified Hamiltonians and Modified Measures of 2D Kahan Maps
Abstract: We show how to construct in an elementary way the invariant of the KHK discretisation of a cubic Hamiltonian system in two dimensions. That is, we show that this invariant is expressible as the product of the ratios of affine polynomials defining the prolongation of the three parallel sides of a hexagon. On the vertices of such a hexagon lie the indeterminacy points of the KHK map. This result is obtained analysing the structure of the singular fibres of the known invariant. We apply this construction to several examples, and we prove that a similar result holds true for a case outside the hypotheses of the main theorem, leading us to conjecture that further extensions are possible.
- Jaume Alonso, Yuri B. Suris and Kangning Wei “A Three-Dimensional Generalization of QRT Maps” In J. Nonlinear Sci. 33.6, 2023, pp. Paper No. 117
- “Algebraic entropy” In Comm. Math. Phys. 204, 1999, pp. 425–437
- A.S. Carstea, A. Dzhamay and T. Takenawa “Fiber-dependent deautonomization of integrable 2D mappings and discrete Painlevé equations” In J. Phys. A: Math. Theor. 50, 2017, pp. 405202\bibrangessep(41pp)
- “A classification of two-dimensional integrable mappings and rational elliptic surfaces” In J. Phys. A 45, 2012, pp. 155206 (15pp)
- “Using discrete Darboux polynomials to detect and determine preserved measures and integrals of rational maps” In J. Phys. A: Math. Theor. 52, 2019, pp. 31LT01 (11pp)
- “Integrability properties of Kahan’s method” In J. Phys. A: Math. Theor. 47.36, 2014, pp. 365202
- “Two classes of quadratic vector fields for which the Kahan discretization is integrable” In MI Lecture Notes 74, 2017, pp. 60–62
- “Geometric properties of Kahan’s method” In J. Phys. A: Math. Theor. 46.2, 2013, pp. 025201
- “Dynamics of bimeromorphic maps of surfaces” In Amer. J. Math. 123.6, 2001, pp. 1135–1169
- J.J. Duistermaat “Discrete Integrable Systems: QRT Maps and Elliptic Surfaces”, Springer Monographs in Mathematics Springer New York, 2011
- “Growth and integrability of some birational maps in dimension three” In Annales Henri Poincaré 2023, 2023, pp. (61pp)
- G. Gubbiotti “Lax pairs for the discrete reduced Nahm systems” In Math. Phys. Anal. Geom. 24, 2021, pp. 9 (13pp)
- “Space of initial values of a map with a quartic invariant” In Bull. Aus. Mat. Soc., 2020, pp. 1–12
- “Determination of the symmetry group for some QRT roots” arXiv:2305.17107 [math.GA]
- “Array programming with NumPy” In Nature 585.7825, 2020, pp. 357–362 DOI: 10.1038/s41586-020-2649-2
- “The applicability of the third integral of motion: some numerical experiments” In Astron. J. 69, 1964, pp. 73–79
- J. Hietarinta, N. Joshi and F. Nijhoff “Discrete Systems and Integrability”, Cambridge Texts in Applied Mathematics Cambridge University Press, 2016
- “Discretization of the Euler Top” In J. Phys. Soc. Japan 69.3, 2000, pp. 627–630
- J.D. Hunter “Matplotlib: A 2D graphics environment” In Computing in Science & Engineering 9, 2007, pp. 90–95 DOI: 10.1109/MCSE.2007.55
- W. Kahan “Unconventional numerical methods for trajectory calculations” Unpublished lecture notes, 1993
- “Unconventional schemes for a class of ordinary differential equations - with applications to the Korteweg-de Vries equation” In J. Comp. Phys. 134, 1997, pp. 316–331
- “Three classes of quadratic vector fields for which the Kahan discretisation is the root of a generalised Manin transformation” In J. Phys. A: Math. Theor. 52, 2019, pp. 045204 (10pp)
- “Discretization of the Lagrange top” In J. Phys. Soc. Japan 69, 2000, pp. 3193–3199
- Kunihiko Kodaira “On compact analytic surfaces: II” In Ann. Math., 1963, pp. 563–626
- R.I. McLachlan, D.I. McLaren and G.R.W. Quispel “Birational maps from polarization and the preservation of measure and integrals” In J. Phys. A: Math. Theor. 56.36 IOP Publishing, 2023, pp. 365202
- “The Mordell-Weil lattice of a rational elliptic surface” In Comment. Math. Univ. St. Pauli 40, 1991
- M. Petrera, A. Pfadler and Yu.B. Suris “On integrability of Hirota–Kimura type discretizations: Experimental study of the discrete Clebsch system” In Exp. Math. 18, 2009, pp. 223–247
- M. Petrera, A. Pfadler and Yu.B. Suris “On Integrability of Hirota–Kimura Type Discretizations” In Regul. Chaot. Dyn. 16, 2011, pp. 245–289
- “On the Hamiltonian structure of Hirota-Kimura discretization of the Euler top” In Math. Nachr. 283.11, 2010, pp. 1654–1663
- “Manin involutions for elliptic pencils and discrete integrable systems” In Math. Phys. Anal. Geom. 24.1, 2021, pp. 1–26
- “New classes of quadratic vector fields admitting integral-preserving Kahan-Hirota-Kimura discretizations” In J. Phys. A: Math. Theor. 50, 2017, pp. 205203\bibrangessep(13pp)
- Matteo Petrera, Jennifer Smirin and Yuri B. Suris “Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems” In Proc. Roy. Soc. A. 475.2223, 2019, pp. 20180761\bibrangessep(13pp)
- “Characterizing singular curves in parametrized families of biquadratics” In J. Phys. A: Math. Theor. 41.11, 2008, pp. 115203\bibrangessep(28pp)
- G.R.W. Quispel, J.A.G. Roberts and C.J. Thompson “Integrable mappings and soliton equations” In Phys. Lett. A 126, 1988, pp. 419
- G.R.W. Quispel, J.A.G. Roberts and C.J. Thompson “Integrable mappings and soliton equations II” In Physica D 34.1, 1989, pp. 183–192
- “Mordell–Weil Lattices”, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics Springer Nature Singapore, 2019
- I.R. Shafarevich “Basic Algebraic Geometry 1” 213, Grundlehren der mathematischen Wissenschaften Berlin, Heidelberg, New York: Springer-Verlag, 1994
- M. Tabor “Chaos and Integrability in Nonlinear Dynamics” New York: Wiley, 1989
- T. Takenawa “Algebraic entropy and the space of initial values for discrete dynamical systems” In J. Phys. A: Math. Gen. 34, 2001, pp. 10533
- T. Tsuda “Integrable mappings via rational elliptic surfaces” In J. Phys. A: Math. Gen. 37, 2004, pp. 2721
- R. Zander “On the singularity structure of Kahan discretizations of a class of quadratic vector fields” In Europ. J. Math. 7.3, 2021, pp. 1046–1073
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.