Adaptive Gaussian Markov Random Fields for Child Mortality Estimation
Abstract: The under-5 mortality rate (U5MR), a critical health indicator, is typically estimated from household surveys in lower and middle income countries. Spatio-temporal disaggregation of household survey data can lead to highly variable estimates of U5MR, necessitating the usage of smoothing models which borrow information across space and time. The assumptions of common smoothing models may be unrealistic when certain time periods or regions are expected to have shocks in mortality relative to their neighbors, which can lead to oversmoothing of U5MR estimates. In this paper, we develop a spatial and temporal smoothing approach based on Gaussian Markov random field models which incorporate knowledge of these expected shocks in mortality. We demonstrate the potential for these models to improve upon alternatives not incorporating knowledge of expected shocks in a simulation study. We apply these models to estimate U5MR in Rwanda at the national level from 1985-2019, a time period which includes the Rwandan civil war and genocide.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.