Mi-Go: Test Framework which uses YouTube as Data Source for Evaluating Speech Recognition Models like OpenAI's Whisper (2309.00329v1)
Abstract: This article introduces Mi-Go, a novel testing framework aimed at evaluating the performance and adaptability of general-purpose speech recognition machine learning models across diverse real-world scenarios. The framework leverages YouTube as a rich and continuously updated data source, accounting for multiple languages, accents, dialects, speaking styles, and audio quality levels. To demonstrate the effectiveness of the framework, the Whisper model, developed by OpenAI, was employed as a test object. The tests involve using a total of 124 YouTube videos to test all Whisper model versions. The results underscore the utility of YouTube as a valuable testing platform for speech recognition models, ensuring their robustness, accuracy, and adaptability to diverse languages and acoustic conditions. Additionally, by contrasting the machine-generated transcriptions against human-made subtitles, the Mi-Go framework can help pinpoint potential misuse of YouTube subtitles, like Search Engine Optimization.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.