Distance-regular graphs with classical parameters that support a uniform structure: case $q \ge 2$ (2308.16679v1)
Abstract: Let $\Gamma=(X,\mathcal{R})$ denote a finite, simple, connected, and undirected non-bipartite graph with vertex set $X$ and edge set $\mathcal{R}$. Fix a vertex $x \in X$, and define $\mathcal{R}_f = \mathcal{R} \setminus {yz \mid \partial(x,y) = \partial(x,z)}$, where $\partial$ denotes the path-length distance in $\Gamma$. Observe that the graph $\Gamma_f=(X,\mathcal{R}_f)$ is bipartite. We say that $\Gamma$ supports a uniform structure with respect to $x$ whenever $\Gamma_f$ has a uniform structure with respect to $x$ in the sense of Miklavi\v{c} and Terwilliger \cite{MikTer}. Assume that $\Gamma$ is a distance-regular graph with classical parameters $(D,q,\alpha,\beta)$ and diameter $D\geq 4$. Recall that $q$ is an integer such that $q \not \in {-1,0}$. The purpose of this paper is to study when $\Gamma$ supports a uniform structure with respect to $x$. We studied the case $q \le 1$ in \cite{FMMM}, and so in this paper we assume $q \geq 2$. Let $T=T(x)$ denote the Terwilliger algebra of $\Gamma$ with respect to $x$. Under an additional assumption that every irreducible $T$-module with endpoint $1$ is thin, we show that if $\Gamma$ supports a uniform structure with respect to $x$, then either $\alpha = 0$ or $\alpha=q$, $\beta=q2(qD-1)/(q-1)$, and $D \equiv 0 \pmod{6}$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.