Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the oscillating electric dipole moment induced by axion-fermion couplings (2308.16135v2)

Published 30 Aug 2023 in hep-ph and hep-ex

Abstract: It has been recently claimed that the axion coupling to fermions is responsible for an oscillating electric dipole moment (EDM) in the background of axion dark matter. In this work, we re-examine the derivation of this effect. Contrary to previous studies, we point out the physical relevance of an axion boundary term, which is crucial in restoring the axion shift symmetry and drastically affects the EDM phenomenology. To describe the latter, we introduce the notion of a time-averaged effective axion EDM, which encodes the boundary term and whose magnitude depends on the oscillation regime. For slow oscillations, the boundary term washes out the standard oscillating EDM, resulting in an exact cancellation in the static limit. Conversely, during fast oscillations, the boundary term amplifies the effective EDM relatively to the standard EDM contribution. This observable is especially interesting in the case of the electron EDM. For an $\mathcal{O}(1)$ axion-electron coupling, the overall size of the effective EDM in the regime of intermediate or fast oscillations is comparable to the present static EDM limit.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of Instantons,” Phys. Rev. Lett. 38 (1977) 1440–1443.
  2. R. D. Peccei and H. R. Quinn, “Constraints Imposed by CP Conservation in the Presence of Instantons,” Phys. Rev. D16 (1977) 1791–1797.
  3. S. Weinberg, “A New Light Boson?,” Phys. Rev. Lett. 40 (1978) 223–226.
  4. F. Wilczek, “Problem of Strong p and t Invariance in the Presence of Instantons,” Phys. Rev. Lett. 40 (1978) 279–282.
  5. J. Preskill, M. B. Wise, and F. Wilczek, “Cosmology of the Invisible Axion,” Phys. Lett. B 120 (1983) 127–132.
  6. L. Abbott and P. Sikivie, “A Cosmological Bound on the Invisible Axion,” Phys. Lett. B 120 (1983) 133–136.
  7. M. Dine and W. Fischler, “The Not So Harmless Axion,” Phys. Lett. B 120 (1983) 137–141.
  8. L. Di Luzio, M. Giannotti, E. Nardi, and L. Visinelli, “The landscape of QCD axion models,” Phys. Rept. 870 (2020) 1–117, arXiv:2003.01100 [hep-ph].
  9. I. G. Irastorza and J. Redondo, “New experimental approaches in the search for axion-like particles,” Prog. Part. Nucl. Phys. 102 (2018) 89–159, arXiv:1801.08127 [hep-ph].
  10. P. Sikivie, “Invisible Axion Search Methods,” Rev. Mod. Phys. 93 no. 1, (2021) 015004, arXiv:2003.02206 [hep-ph].
  11. P. W. Graham and S. Rajendran, “New Observables for Direct Detection of Axion Dark Matter,” Phys. Rev. D88 (2013) 035023, arXiv:1306.6088 [hep-ph].
  12. D. Budker, P. W. Graham, M. Ledbetter, S. Rajendran, and A. Sushkov, “Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr),” Phys. Rev. X 4 no. 2, (2014) 021030, arXiv:1306.6089 [hep-ph].
  13. D. F. Jackson Kimball et al., “Overview of the Cosmic Axion Spin Precession Experiment (CASPEr),” Springer Proc. Phys. 245 (2020) 105–121, arXiv:1711.08999 [physics.ins-det].
  14. Y. V. Stadnik and V. V. Flambaum, “Axion-induced effects in atoms, molecules, and nuclei: Parity nonconservation, anapole moments, electric dipole moments, and spin-gravity and spin-axion momentum couplings,” Phys. Rev. D 89 no. 4, (2014) 043522, arXiv:1312.6667 [hep-ph].
  15. C. Abel et al., “Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields,” Phys. Rev. X 7 no. 4, (2017) 041034, arXiv:1708.06367 [hep-ph].
  16. V. V. Flambaum, M. Pospelov, A. Ritz, and Y. V. Stadnik, “Sensitivity of EDM experiments in paramagnetic atoms and molecules to hadronic CP violation,” Phys. Rev. D 102 no. 3, (2020) 035001, arXiv:1912.13129 [hep-ph].
  17. S. P. Chang, S. Haciomeroglu, O. Kim, S. Lee, S. Park, and Y. K. Semertzidis, “Axionlike dark matter search using the storage ring EDM method,” Phys. Rev. D 99 no. 8, (2019) 083002, arXiv:1710.05271 [hep-ex].
  18. J. Pretz, S. Karanth, E. Stephenson, S. P. Chang, V. Hejny, S. Park, Y. Semertzidis, and H. Ströher, “Statistical sensitivity estimates for oscillating electric dipole moment measurements in storage rings,” Eur. Phys. J. C 80 no. 2, (2020) 107, arXiv:1908.09678 [hep-ex].
  19. P. W. Graham, S. Hacıömeroğlu, D. E. Kaplan, Z. Omarov, S. Rajendran, and Y. K. Semertzidis, “Storage ring probes of dark matter and dark energy,” Phys. Rev. D 103 no. 5, (2021) 055010, arXiv:2005.11867 [hep-ph].
  20. O. Kim and Y. K. Semertzidis, “New method of probing an oscillating EDM induced by axionlike dark matter using an rf Wien filter in storage rings,” Phys. Rev. D 104 no. 9, (2021) 096006, arXiv:2105.06655 [hep-ph].
  21. R. Suleiman, V. S. Morozov, and Y. S. Derbenev, “High precision fundamental physics experiments using compact spin-transparent storage rings of low energy polarized electron beams,” Phys. Lett. B 843 (2023) 138058, arXiv:2105.11575 [physics.acc-ph].
  22. C. Smith, “On the fermionic couplings of axionic dark matter,” Eur. Phys. J. C 84 (2024) 12, arXiv:2302.01142 [hep-ph].
  23. S. Alexander and R. Sims, “Detecting axions via induced electron spin precession,” Phys. Rev. D 98 no. 1, (2018) 015011, arXiv:1702.01459 [hep-ph].
  24. Z. Wang and L. Shao, “Axion induced spin effective couplings,” Phys. Rev. D 103 no. 11, (2021) 116021, arXiv:2102.04669 [hep-ph].
  25. ACME Collaboration, V. Andreev et al., “Improved limit on the electric dipole moment of the electron,” Nature 562 no. 7727, (2018) 355–360.
  26. L. L. Foldy and S. A. Wouthuysen, “On the Dirac theory of spin 1/2 particle and its nonrelativistic limit,” Phys. Rev. 78 (1950) 29–36.
  27. W. Pauli, “Zur Quantenmechanik des magnetischen Elektrons,” Zeitschrift für Physik 43 no. 9-10, (1927) 601–623.
  28. E. de Vries and J. E. Jonker, “Non-relativistic approximations of the Dirac Hamitonian,” Nucl. Phys. B 6 (1968) 213–225.
  29. A. R. Zhitnitsky, “On Possible Suppression of the Axion Hadron Interactions. (In Russian),” Sov. J. Nucl. Phys. 31 (1980) 260. [Yad. Fiz.31,497(1980)].
  30. M. Dine, W. Fischler, and M. Srednicki, “A Simple Solution to the Strong CP Problem with a Harmless Axion,” Phys. Lett. B104 (1981) 199–202.
  31. K. Fujikawa, “Path Integral Measure for Gauge Invariant Fermion Theories,” Phys. Rev. Lett. 42 (1979) 1195–1198.
  32. W. Pauli, Die Allgemeinen Prinzipien der Wellenmechanik. Springer, Berlin, Germany, Nov., 1990.
  33. M. Pospelov, A. Ritz, and M. B. Voloshin, “Bosonic super-WIMPs as keV-scale dark matter,” Phys. Rev. D 78 (2008) 115012, arXiv:0807.3279 [hep-ph].
  34. R. Shankar, Principles of Quantum Mechanics. Springer, 1994. https://books.google.it/books?id=2zypV5EbKuIC.
  35. S. Kamefuchi, L. O’Raifeartaigh, and A. Salam, “Change of variables and equivalence theorems in quantum field theories,” Nucl. Phys. 28 (1961) 529–549.
  36. J. S. R. Chisholm, “Change of variables in quantum field theories,” Nucl. Phys. 26 no. 3, (1961) 469–479.
  37. R. E. Kallosh and I. V. Tyutin, “The Equivalence theorem and gauge invariance in renormalizable theories,” Yad. Fiz. 17 (1973) 190–209.
  38. Particle Data Group Collaboration, R. L. Workman et al., “Review of Particle Physics,” PTEP 2022 (2022) 083C01.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: