A new $p$-harmonic map flow with Struwe monotonicity
Abstract: We construct and analyze solutions to a regularized homogeneous $p$-harmonic map flow equation for general $p \geq 2$. The homogeneous version of the problem is new and features a monotonicity formula extending the one found by Struwe for $p = 2$; such a formula is not available for the nonhomogeneous equation. The construction itself is via a Ginzburg-Landau-type approximation `a la Chen-Struwe, employing tools such as a Bochner-type formula and an $\varepsilon$-regularity theorem. We similarly obtain strong subsequential convergence of the approximations away from a concentration set with parabolic codimension at least $p$. However, the quasilinear and non-divergence nature of the equation presents new obstacles that do not appear in the classical case $p = 2$, namely uniform-time existence for the approximating problem, and thus our basic existence result is stated conditionally.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.