Papers
Topics
Authors
Recent
2000 character limit reached

Quantum Algorithm for Computing Distances Between Subspaces (2308.15432v2)

Published 29 Aug 2023 in quant-ph

Abstract: Geometry and topology have generated impacts far beyond their pure mathematical primitive, providing a solid foundation for many applicable tools. Typically, real-world data are represented as vectors, forming a linear subspace for a given data collection. Computing distances between different subspaces is generally a computationally challenging problem with both theoretical and applicable consequences, as, for example, the results can be used to classify data from different categories. Fueled by the fast-growing development of quantum algorithms, we consider such problems in the quantum context and provide a quantum algorithm for estimating two kinds of distance: Grassmann distance and ellipsoid distance. Under appropriate assumptions and conditions, the speedup of our quantum algorithm is exponential with respect to both the dimension of the given data and the number of data points. Some extensions regarding estimating different kinds of distance are then discussed as a corollary of our main quantum algorithmic method.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.