Generalized equations of hydrodynamics in fractional derivatives (2308.14194v2)
Abstract: We present a general approach for obtaining the generalized transport equations with fractional derivatives using the Liouville equation with fractional derivatives for a system of classical particles and the Zubarev non-equilibrium statistical operator (NSO) method within the Gibbs statistics. We obtain the non-Markov equations of hydrodynamics for the non-equilibrium average values of densities of particle number, momentum and energy of liquid in a spatially heterogeneous medium with a fractal structure. For isothermal processes ($\beta=1/k_{B}T =const$), the non-Markov Navier-Stokes equation in fractional derivatives is obtained. We consider models for the frequency dependence of memory function (viscosity), which lead to the Navier-Stokes equations in fractional derivatives in space and time.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.