Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quark-hadron pasta phase in neutron stars: the role of medium-dependent surface and curvature tensions (2308.13973v2)

Published 26 Aug 2023 in nucl-th, astro-ph.HE, and hep-ph

Abstract: We investigate the properties of the hadron-quark mixed phase, often termed the \textit{pasta} phase, expected to exist in the cores of massive neutron stars. To construct the equations of state (EoS), we combine an analytical representation based on the APR EoS for hadronic matter with the MIT bag model featuring vector interactions for quark matter. For modeling the mixed phase, we utilize the compressible liquid drop model that consistently accounts for finite-size and Coulomb effects. Unlike most previous analyses that treated surface tension as a constant free parameter and neglected curvature tension, we employ microphysical calculations using the multiple reflection expansion formalism to determine these parameters, while also ensuring their self-consistency with the EoS. We construct an extensive set of mixed hybrid EoSs by varying model parameters, solve the stellar structure equations to obtain neutron star mass-radius relationships, and select the models that satisfy current astrophysical constraints. Our findings closely align with calculations using a constant surface tension in terms of EoS stiffness and resulting stellar structure. However, they reveal significant differences in the types of geometric structures and their prevalence ranges within the mixed phase. Specifically, curvature effects enhance the emergence of tubes and bubbles at high densities despite the large value of surface tension, while suppressing the existence of drops and rods at low densities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. H. Heiselberg and M. Hjorth-Jensen, Phases of dense matter in neutron stars, Phys. Rept. 328, 237 (2000), arXiv:nucl-th/9902033 .
  2. D. N. Voskresensky, M. Yasuhira, and T. Tatsumi, Charge screening at first order phase transitions and hadron quark mixed phase, Nucl. Phys. A 723, 291 (2003), arXiv:nucl-th/0208067 .
  3. D. G. Ravenhall, C. J. Pethick, and J. R. Wilson, Structure of matter below nuclear saturation density, Phys. Rev. Lett. 50, 2066 (1983).
  4. N. K. Glendenning, First order phase transitions with more than one conserved charge: Consequences for neutron stars, Phys. Rev. D 46, 1274 (1992).
  5. N. K. Glendenning, Phase transitions and crystalline structures in neutron star cores, Phys. Rept. 342, 393 (2001).
  6. P. Haensel, A. Potekhin, and D. Yakovlev, Neutron Stars 1: Equation of State and Structure, Astrophysics and Space Science Library (Springer New York, 2007).
  7. C. J. Pethick, D. G. Ravenhall, and J. M. Lattimer, Effect of nuclear curvature energy on the transition between nuclei and bubbles in dense matter, Phys. Lett. B 128, 137 (1983).
  8. C. P. Lorenz, Dense matter and the compressible liquid drop model, Ph.D. thesis, University of Illinois at Urbana-Champaign (1991).
  9. H. Dinh Thi, A. F. Fantina, and F. Gulminelli, The effect of the energy functional on the pasta-phase properties of catalysed neutron stars, European Physical Journal A 57, 296 (2021), arXiv:2111.04374 [astro-ph.HE] .
  10. A. F. Garcia and M. B. Pinto, Surface tension of magnetized quark matter, Phys. Rev. C 88, 025207 (2013), arXiv:1306.3090 [hep-ph] .
  11. W.-y. Ke and Y.-x. Liu, Interface tension and interface entropy in the 2+1 flavor Nambu-Jona-Lasinio model, Phys. Rev. D 89, 074041 (2014), arXiv:1312.2295 [hep-ph] .
  12. M. B. Pinto, V. Koch, and J. Randrup, The Surface Tension of Quark Matter in a Geometrical Approach, Phys. Rev. C 86, 025203 (2012), arXiv:1207.5186 [hep-ph] .
  13. L. F. Palhares and E. S. Fraga, Droplets in the cold and dense linear sigma model with quarks, Phys. Rev. D 82, 125018 (2010), arXiv:1006.2357 [hep-ph] .
  14. D. Kroff and E. S. Fraga, Nucleating quark droplets in the core of magnetars, Phys. Rev. D 91, 025017 (2015), arXiv:1409.7026 [hep-ph] .
  15. M. Berger and R. Jaffe, Radioactivity in strange quark matter, Phys. Rev. C 35, 213 (1987).
  16. G. Lugones and A. G. Grunfeld, Surface tension of highly magnetized degenerate quark matter, Phys. Rev. C 95, 015804 (2017), arXiv:1610.05875 [nucl-th] .
  17. G. Lugones and A. G. Grunfeld, Surface tension of hot and dense quark matter under strong magnetic fields, Phys. Rev. C 99, 035804 (2019), arXiv:1811.09954 [astro-ph.HE] .
  18. G. Lugones and A. G. Grunfeld, Surface and curvature properties of charged strangelets in compact objects, Phys. Rev. C 103, 035813 (2021a), arXiv:2010.06098 [nucl-th] .
  19. G. Lugones, A. G. Grunfeld, and M. Al Ajmi, Surface tension and curvature energy of quark matter in the Nambu-Jona-Lasinio model, Phys. Rev. C 88, 045803 (2013), arXiv:1308.1452 [hep-ph] .
  20. G. Lugones and A. G. Grunfeld, Vector interactions inhibit quark-hadron mixed phases in neutron stars, Phys. Rev. D 104, L101301 (2021b), arXiv:2109.01749 [nucl-th] .
  21. G. Baym, H. A. Bethe, and C. J. Pethick, Neutron star matter, Nuclear Physics A 175, 225 (1971).
  22. S. S. Bao and H. Shen, Influence of the symmetry energy on nuclear “pasta” in neutron star crusts, Phys. Rev. C 89, 045807 (2014).
  23. X. Wu and H. Shen, Finite-size effects on the hadron-quark phase transition in neutron stars, Phys. Rev. C 96, 025802 (2017), arXiv:1708.01878 [nucl-th] .
  24. X. H. Wu and H. Shen, Nuclear symmetry energy and hadron-quark mixed phase in neutron stars, Phys. Rev. C 99, 065802 (2019), arXiv:1811.06843 [nucl-th] .
  25. M. Ju, J. Hu, and H. Shen, Hadron-quark Pasta Phase in Massive Neutron Stars, Astrophys. J. 923, 250 (2021a), arXiv:2111.08909 [nucl-th] .
  26. Z. Arzoumanian et al., The NANOGrav 11-year data set: High-precision timing of 45 millisecond pulsars, The Astrophysical Journal Supplement Series 235, 37 (2018).
  27. J. Antoniadis et al., A Massive Pulsar in a Compact Relativistic Binary, Science 340, 448 (2013), arXiv:1304.6875 [astro-ph.HE] .
  28. H. T. Cromartie et al., Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar, Nature Astronomy 4, 72 (2020), arXiv:1904.06759 [astro-ph.HE] .
  29. E. Fonseca et al., Refined Mass and Geometric Measurements of the High-mass PSR J0740+6620, ApJL 915, L12 (2021), arXiv:2104.00880 [astro-ph.HE] .
  30. M. C. Miller et al., The Radius of PSR J0740+6620 from NICER and XMM-Newton Data, Astrophys. J. Lett. 918, L28 (2021), arXiv:2105.06979 [astro-ph.HE] .
  31. T. E. Riley et al., A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy, Astrophys. J. Lett. 918, L27 (2021), arXiv:2105.06980 [astro-ph.HE] .
  32. M. C. Miller and et al., PSR j0030+0451 mass and radius from NICER data and implications for the properties of neutron star matter, Astrophys. J. Lett. 887, L24 (2019).
  33. T. E. Riley and et al., A NICER view of PSR j0030+0451: Millisecond pulsar parameter estimation, Astrophys. J. Lett. 887, L21 (2019).
  34. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Gw170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119, 161101 (2017).
  35. B. Abbott et al. (LIGO Scientific, Virgo), GW170817: Measurements of neutron star radii and equation of state, Phys. Rev. Lett. 121, 161101 (2018), arXiv:1805.11581 [gr-qc] .
  36. B. P. Abbott et al., GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼similar-to\sim∼ 3.4 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT, Astrophys. J. Lett. 892, L3 (2020), arXiv:2001.01761 [astro-ph.HE] .
  37. B. P. Abbott et al., Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A, Astrophys. J. Lett. 848, L13 (2017), arXiv:1710.05834 [astro-ph.HE] .
  38. B. P. Abbott et al., Multi-messenger observations of a binary neutron star merger, The Astrophysical Journal 848, L12 (2017).
  39. A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, The Equation of state of nucleon matter and neutron star structure, Phys. Rev. C 58, 1804 (1998), arXiv:nucl-th/9804027 .
  40. U. Garg and G. Colò, The compression-mode giant resonances and nuclear incompressibility, Prog. Part. Nucl. Phys. 101, 55 (2018), arXiv:1801.03672 [nucl-ex] .
  41. A. Kumar, H. C. Das, and S. K. Patra, Incompressibility and symmetry energy of a neutron star, Phys. Rev. C 104, 055804 (2021), arXiv:2105.07721 [nucl-th] .
  42. G. F. Burgio and I. Vidana, The Equation of State of Nuclear Matter : from Finite Nuclei to Neutron Stars, Universe 6, 119 (2020), arXiv:2007.04427 [nucl-th] .
  43. B. Franzon, R. O. Gomes, and S. Schramm, Effects of the quark-hadron phase transition on highly magnetized neutron stars, Mon. Not. Roy. Astron. Soc. 463, 571 (2016), arXiv:1608.02845 [astro-ph.HE] .
  44. E. Farhi and R. Jaffe, Strange Matter, Phys. Rev. D 30, 2379 (1984).
  45. H. Heiselberg, C. J. Pethick, and E. F. Staubo, Quark matter droplets in neutron stars, Phys. Rev. Lett. 70, 1355 (1993).
  46. A. Schmitt, Chiral pasta: Mixed phases at the chiral phase transition, Phys. Rev. D 101, 074007 (2020), arXiv:2002.01451 [hep-ph] .
  47. M. F. Izzo Villafañe, G. Lugones, and A. G. Grunfeld, Surface and curvature tensions of cold quark matter in the su(3)f njl model with vector interactions, Astronomische Nachrichten n/a, e20230159 (2023).
  48. M. L. Olesen and J. Madsen, Nucleation of quark matter bubbles in neutron stars, Phys. Rev. D 49, 2698 (1994), arXiv:astro-ph/9401002 [astro-ph] .
  49. M. Alford, S. Mahmoodifar, and K. Schwenzer, Viscous damping of r-modes: Small amplitude instability, Phys. Rev. D 85, 024007 (2012), arXiv:1012.4883 [astro-ph.HE] .
  50. J. P. Pereira, C. V. Flores, and G. Lugones, Phase transition effects on the dynamical stability of hybrid neutron stars, Astrophys. J. 860, 12 (2018), arXiv:1706.09371 [gr-qc] .
  51. G. Lugones, M. Mariani, and I. F. Ranea-Sandoval, A model-agnostic analysis of hybrid stars with reactive interfaces, JCAP 2023 (3), 028, arXiv:2106.10380 [nucl-th] .
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: