Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Differentiable Weight Masks for Domain Transfer (2308.13957v2)

Published 26 Aug 2023 in cs.CV, cs.AI, and cs.LG

Abstract: One of the major drawbacks of deep learning models for computer vision has been their inability to retain multiple sources of information in a modular fashion. For instance, given a network that has been trained on a source task, we would like to re-train this network on a similar, yet different, target task while maintaining its performance on the source task. Simultaneously, researchers have extensively studied modularization of network weights to localize and identify the set of weights culpable for eliciting the observed performance on a given task. One set of works studies the modularization induced in the weights of a neural network by learning and analysing weight masks. In this work, we combine these fields to study three such weight masking methods and analyse their ability to mitigate "forgetting'' on the source task while also allowing for efficient finetuning on the target task. We find that different masking techniques have trade-offs in retaining knowledge in the source task without adversely affecting target task performance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.