Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Gröbner Approach to Dual-Containing Cyclic Left Module $(θ,δ)$-Codes over Finite Commutative Frobenius Rings

Published 25 Aug 2023 in cs.IT, cs.DM, math.IT, math.QA, and math.RA | (2308.13395v2)

Abstract: For a skew polynomial ring $R=A[X;\theta,\delta]$ where $A$ is a commutative Frobenius ring, $\theta$ an endomorphism of $A$ and $\delta$ a $\theta$-derivation of $A$, we consider cyclic left module codes $\mathcal{C}=Rg/Rf\subset R/Rf$ where $g$ is a left and right divisor of $f$ in $R$. In this paper, we derive a parity check matrix when $A$ is a finite commutative Frobenius ring using only the framework of skew polynomial rings. We consider rings $A=B[a_1,\ldots,a_s]$ which are free $B$-modules where the restriction of $\delta$ and $\theta$ to $B$ are polynomial maps. If a Gr\"obner basis can be computed over $B$, then we show that all Euclidean and Hermitian dual-containing codes $\mathcal{C}=Rg/Rf\subset R/Rf$ can be computed using a Gr\"obner basis. We also give an algorithm to test if the dual code is again a cyclic left module code. We illustrate our approach for rings of order $4$ with non-trivial endomorphism and the Galois ring of characteristic $4$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.